• Title/Summary/Keyword: minimum chord

Search Result 20, Processing Time 0.028 seconds

LOWER BOUND OF LENGTH OF TRIANGLE INSCRIBED IN A CIRCLE ON NON-EUCLIDEAN SPACES

  • Chai, Y.D.;Lee, Young-Soo
    • Honam Mathematical Journal
    • /
    • v.34 no.1
    • /
    • pp.103-111
    • /
    • 2012
  • Wetzel[5] proved if ${\Gamma}$ is a closed curve of length L in $E^n$, then ${\Gamma}$ lies in some ball of radius [L/4]. In this paper, we generalize Wetzel's result to the non-Euclidean plane with much stronger version. That is to develop a lower bound of length of a triangle inscribed in a circle in non-Euclidean plane in terms of a chord of the circle.

A Efficient Cloaking Region Creation Scheme using Hilbert Curves in Distributed Grid Environment (분산 그리드 환경에서 힐버트 커브를 이용한 효율적인 Cloaking 영역 설정 기법)

  • Lee, Ah-Reum;Um, Jung-Ho;Chang, Jae-Woo
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.1
    • /
    • pp.115-126
    • /
    • 2009
  • Recent development in wireless communication and mobile positioning technologies makes Location-Based Services (LBSs) popular. However, because, in the LBSs, users request a query to database servers by using their exact locations, the location information of the users can be misused by adversaries. Therefore, a mechanism for users' privacy protection is required for the safe use of LBSs by mobile users. For this, we, in this paper, propose a efficient cloaking region creation scheme using Hilbert curves in distributed grid environment, so as to protect users' privacy in LBSs. The proposed scheme generates a minimum cloaking region by analyzing the characteristic of a Hilbert curve and computing the Hilbert curve values of neighboring cells based on it, so that we may create a cloaking region to satisfy K-anonymity. In addition, to reduce network communication cost, we make use of a distributed hash table structure, called Chord. Finally, we show from our performance analysis that the proposed scheme outperforms the existing grid-based cloaking method.

  • PDF

The Study of Advanced Propeller Blade for Next Generation Turboprop Aircraft -Part I. Aerodynamic Design and Analysis (차세대 터보프롭 항공기용 최신 프로펠러 블레이드 연구 -Part I. 공력 설계 및 해석)

  • Choi, Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1017-1024
    • /
    • 2012
  • The aerodynamic design and analysis on advanced propeller with blade sweep was performed for recent turboprop aircraft. HS1 airfoil series are selected as a advanced propeller blade airfoil. Adkins method is used for aerodynamic design and performance analysis with respect to the design point. Adkins method is based on the vortex-blade element theory which design the propeller to satisfy the condition for minimum energy loss. Propeller geometry is generated by varying chord length and pitch angle at design point of target aircraft. Advanced propeller is designed by apply the modified chord length, the tip sweep which is based on the geometry of conventional propeller. The aerodynamic characteristics of the designed Advanced propeller were verified by CFD(Computational Fluid Dynamic) and evaluated to be properly designed.

Two-Dimensional Mechanism of Hovering Flight by Flapping Wings (날개짓에 의한 공중정지비행의 이차원 메카니즘)

  • Kim, Do-Kyun;Choi, Hae-Cheon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.759-764
    • /
    • 2003
  • Numerical simulations are conducted to investigate the mechanism of hovering flight by single flapping wing, and to examine the effect of the phase difference between the fore- and hindwings in hovering flight by two flapping wings. The numerical method used is based on an immersed boundary method in Cartesian coordinates. The Reynolds number considered is Re=150 based on the maximum translational velocity and chord length of the wing. For single flapping wing, the stroke plane angles are $0^{\circ}$, $30^{\circ}$, $60^{\circ}$, $75^{\circ}$ and $90^{\circ}$ and the downstroke angles of attack are varied for each stroke angle. Results show that for each stroke plane angle, there is an optimal angle of attack to maximize the vertical force. Below the stroke angle of $60^{\circ}$, wake capturing reduces the negative vertical force during the upstroke. For two flapping wings, The phase lags of the hindwing are $0^{\circ}$, $90^{\circ}$, $180^{\circ}$ and $270^{\circ}$. The amplitudes of the stroke are 2.5 and 4.0 times the chord length at each phase lag. The results show that maximum vertical force is generated when the phase lag is zero, and the amplitude of the vertical force is minimum at the phase lag of $180^{\circ}$.

  • PDF

ANALYSIS OF COMS-1 NORTH-SOUTH STATION KEEPING METHOD (통신해양기상위성 1호의 남북방향 위치유지 기법 분석)

  • Kim, Hae-Yeon;Lee, Byoung-Sun;Hwang, Yoo-La;Kim, Young-Rok;Park, Sang-Young;Kim, Jae-Hoon
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.4
    • /
    • pp.527-536
    • /
    • 2005
  • The perturbations caused by the Sun and the Moon are predominantly out-of-plane effects causing a change in the inclination and in the right ascension of ascending node of a geostationary satellite. Due to the change of the inclination, subsatellite latitude of the geostationary satellite has a daily variations of the same magnitude of the inclination. Therefore we need a facility to control the orbital inclination and right ascension of ascending node for maintaining the satellite position in specified subsatellite latitude boundary using thrusters. In this paper we studied North-South station keeping strategies of the COMS-1 such as Track-Back Chord Target (TBCT) method, Maximum Compensation Target (MCT) method and Minimum Fuel Target (MFT) method. We accomplished those North-South station keeping maneuvers for one year starting from December 2008. The required velocity increments to maintain the satellite are estimated as MCT 52.6065m/s, TBCT 52.2383m/s, MFT 51.5428m/s, respectively. We demonstrated that TBCT and MFT methods are proper to North-South station keeping for COMS-1. MFT method showed the minimum required velocity increments whereas TBCT traced narrow inclination boundary area for North-South station keeping.

NORTH/SOUTH STATION KEEPING OF GEOSTATIONARY SATELLITE USING MFT (MFT 기법을 이용한 정지위성의 남/북 위치보존)

  • 안웅영;김천휘;박봉규
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.150-157
    • /
    • 1997
  • A precise determination of the fuel efficiency is important because North/South station keeping, which controls the inclination of the geostationary orbit, consumes most of the satellie fuel. We estimate the amount of fuel required during the lifetime of the KOREASAT when MFT(Minimum Fuel Target) technique is adopted, and the result is compared to those when MCT(Maximum Compensation Target) and TBCT(Track-Back Chord Target) technique are applied. From this computation, we find that if MFT technique is adopted, the lifetime of the satellite can be extended at least 45 and 15 days, respectively, compared to those consumed with MCT and TBCT technique.

  • PDF

Aerodynamic Design and Analysis on 1600kW Class Propeller Blade (1600kW급 프로펠러 블레이드 공력설계 및 해석)

  • Choi, Won;Kim, Kwang-Hae;Won, Young-Su;Lee, Won-Joong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.3
    • /
    • pp.19-24
    • /
    • 2012
  • Propeller shall have high efficiency and improved aerodynamic characteristics to get the thrust to fly at high speed for the turboprop aircraft. That is way Clark-Y airfoil which is used to conventional 1600kW class aircraft propeller is selected as a blade airfoil. Adkins method is used for aerodynamic design and performance analysis with respect to the propeller design point. Adkins method is based on the vortex-blade element theory which design the propeller to satisfy the condition for minimum energy loss. propeller geometry is generated by varying chord length and pitch angle at design point of turboprop aircraft. The propeller design results indicate that is evaluated to be properly constructed, through analysis of propeller aerodynamic characteristics using the Meshless method and MRF, SM method.

Design of Two Stage Axial Compressor of a Turbo Shaft Engine for Helicopters (헬리콥터용 터보샤프트엔진 2단 축류압축기 개량설계)

  • Kim, Jin-Han;Kim, Chun-Taek;Lee, Dae-Sung
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.183-190
    • /
    • 1998
  • This paper introduces the part of efforts to develop a derivative type turbo-shaft engine from an existing baseline engine for multi-purpose helicopters targeting at 4000kg of take-off weight for 10-12 passengers. As a first step in meeting the development goal of increasing the output power to 840hp from 720hp with minimum modification, two stage axial compressor was redesigned to obtain the higher pressure ratio by removing the inlet guide vane and increasing the chord length. As a result, two stage axial compressors were designed to have the flow rate of 3.04 kg/s, the pressure ratio of 2.01 and the adiabatic efficiency of $85\%$. Its performance tests were carried out and verification of test results and redesign are under progress. Aerodynamic and structural analyses of the preliminary design are mainly described in this paper.

  • PDF

Influence of Reynolds Number and Scale on Performance Evaluation of Lift-type Vertical Axis Wind Turbine by Scale-model Wind Tunnel Tests

  • Tanino, Tadakazu;Nakao, Shinichiro;Miyaguni, Takeshi;Takahashi, Kazunobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.2
    • /
    • pp.229-234
    • /
    • 2011
  • For Lift-type Vertical Axis Wind Turbine (VAWT), it is difficult to evaluate the performance through the scale-model wind tunnel tests, because of the scale effect relating to Reynolds number. However, it is beneficial to figure out the critical value of Reynolds number or minimum size of the Lift-type VAWT, when designing this type of micro wind turbine. Therefore, in this study, the performance of several scale-models of Lift-type VAWT (Reynolds number : $1.5{\times}10^4$ to $4.6{\times}10^4$) was investigated. As a result, the Reynolds number effect depends on the blade chord rather than the inlet velocity. In addition, there was a transition point of the Reynolds number to change the dominant driving force from Drag to Lift.

Out-of-plane elastic buckling of truss beams

  • Fedoroff, Alexis;Kouhia, Reijo
    • Structural Engineering and Mechanics
    • /
    • v.45 no.5
    • /
    • pp.613-629
    • /
    • 2013
  • In this article we will present a method to directly evaluate the critical point of a non-linear system by using the solution of a polynomial eigenvalue approximation as a starting point for an iterative non-linear system solver. This method will be used to evaluate out-of-plane buckling properties of truss structures for which the lateral displacement of the upper chord has been prevented. The aim is to assess for a number of example structures whether or not the linearized eigenvalue solution gives a relevant starting point for an iterative non-linear system solver in order to find the minimum positive critical load.