• Title/Summary/Keyword: minimizing the dynamic response

Search Result 40, Processing Time 0.092 seconds

A Model-based Study on the Expansion of Measured Data and the Damage Detection (모델기반의 계측데이터 확장 및 손상 추정에 관한 연구)

  • Kang, Taik-Seon;Lee, Byeong-Hyeon;Eun, Hee-Chang
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.3
    • /
    • pp.3-10
    • /
    • 2018
  • It's not practical to collect all information at the entire degrees of freedom of finite element model. The incomplete measurements should be expanded for subsequent analysis and damage detection. This work presents the analytical methods to expand the incomplete static or dynamic response data. Using the expanded data, introducing the concept of residual force, and minimizing the performance index expressed as the stiffness matrix and its difference before and after damage, the variation in stiffness matrix is derived. Based on the difference in the stiffness matrix, the damage detection method of structures is also provided. The validity of the proposed methods is illustrated in a numerical application, the numerical results are analyzed for applications, and the applicability of both methods is investigated.

Air Gap Responses of the Maglev Vehicle UTM-01 to Irregularities of Guideway (자기부상열차 UTM-01의 부상 공극 해석)

  • Han, Hyung-Suk;Kim, Sook-Hee;Yim, Bong-Hyuk;Kwon, Jung-Il;Hur, Young-Chul
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.291-295
    • /
    • 2007
  • The irregularities in the guideways used in the Maglev transportation system that result from surface roughness and deflection of guideway have strong effects on the dynamic characteristics of Maglev vehicles, because the electromagnetic suspension of Maglev vehicles strongly interacts with the guideway. For this reason, a numerical prediction of air gap responses to these irregularities is desirable to improve aspects of running performance, such as stability and passenger comfort, while minimizing aesthetic impact and construction cost. This paper presents a procedure to predict the air gap response which is a criteria for stability, and investigates the responses with the goal of attaining higher travel speeds in the urban Maglev vehicle UTM-01 utilizing electromagnetic suspension.

  • PDF

Multi-Level and Multi-Objective Optimization of Framed Structures Using Automatic Differentiation (자동미분을 이용한 뼈대구조의 다단계 다목적 최적설계)

  • Cho, Hyo-Nam;Min, Dae-Hong;Lee, Kwang-Min;Kim, Hoan-Kee
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.177-186
    • /
    • 2000
  • An improved multi-level(IML) optimization algorithm using automatic differentiation (AD) for multi-objective optimum design of framed structures is proposed in this paper. In order to optimize the steel frames under seismic load, two main objective functions need to be considered for minimizing the structural weight and maximizing the strain energy. For the efficiency of the proposed algorithm, multi-level optimization techniques using decomposition method that separately utilizes both system-level and element-level optimizations and an artificial constraint deletion technique are incorporated in the algorithm. And also to save the numerical efforts, an efficient reanalysis technique through approximated structural responses such as moments, frequencies, and strain energy with respect to intermediate variables is proposed in the paper. Sensitivity analysis of dynamic structural response is executed by AD that is a powerful technique for computing complex or implicit derivatives accurately and efficiently with minimal human effort. The efficiency and robustness of the IML algorithm, compared with a plain multi-level (PML) algorithm, is successfully demonstrated in the numerical examples.

  • PDF

Backbone Dynamics and Model-Free Analysis of N-terminal Domain of Human Replication Protein A 70

  • Yoo, Sooji;Park, Chin-Ju
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.1
    • /
    • pp.18-25
    • /
    • 2018
  • Replication protein A (RPA) is an essential single-stranded DNA binding protein in DNA processing. It is known that N terminal domain of RPA70 (RPA70N) recruits various protein partners including damage-response proteins such as p53, ATRIP, Rad9, and MRE11. Although the common binding residues of RPA70N were revealed, dynamic properties of the protein are not studied yet. In this study, we measured $^{15}N$ relaxation parameters ($T_1,\;T_2$ and heteronuclear NOE) of human RPA70N and analyzed them using model-free analysis. Our data showed that the two loops near the binding site experience fast time scale motion while the binding site does not. It suggests that the protein binding surface of RPA70N is mostly rigid for minimizing entropy cost of binding and the loops can experience conformational changes.

Damage assessment of shear buildings by synchronous estimation of stiffness and damping using measured acceleration

  • Shin, Soobong;Oh, Seong Ho
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.245-261
    • /
    • 2007
  • Nonlinear time-domain system identification (SI) algorithm is proposed to assess damage in a shear building by synchronously estimating time-varying stiffness and damping parameters using measured acceleration data. Mass properties have been assumed as the a priori known information. Viscous damping was utilized for the current research. To chase possible nonlinear dynamic behavior under severe vibration, an incremental governing equation of vibrational motion has been utilized. Stiffness and damping parameters are estimated at each time step by minimizing the response error between measured and computed acceleration increments at the measured degrees-of-freedom. To solve a nonlinear constrained optimization problem for optimal structural parameters, sensitivities of acceleration increment were formulated with respect to stiffness and damping parameters, respectively. Incremental state vectors of vibrational motion were computed numerically by Newmark-${\beta}$ method. No model is pre-defined in the proposed algorithm for recovering the nonlinear response. A time-window scheme together with Monte Carlo iterations was utilized to estimate parameters with noise polluted sparse measured acceleration. A moving average scheme was applied to estimate the time-varying trend of structural parameters in all the examples. To examine the proposed SI algorithm, simulation studies were carried out intensively with sample shear buildings under earthquake excitations. In addition, the algorithm was applied to assess damage with laboratory test data obtained from free vibration on a three-story shear building model.

A hybrid prioritized worker model for efficiency of shared resources in the real-time system (실시간 시스템에서 공유자원의 효율적 사용을 위한 혼합형 우선순위 작업자 모델)

  • Park, Hong-Jin;Chun, Kyung-Ah;Kim, Chang-Min
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.12
    • /
    • pp.3652-3661
    • /
    • 1999
  • To support multimedia applications such as a multimedia communication systems and multimedia broadcasting, an operating system need to predict their timing-constraints. So, In this real-time systems, we must solve the priority inversion problem that may make the behavior of unpredictable systems and need a real-time server model that provides a better preemptability and minimizes a system overhead. In current real-time systems, the single thread server model, the worker model and the dynamic server model are being used for synchronization but they cannot propose an effective structure for managing shared resources. In this paper, the priority inheritance protocol is used to solve the priority inversion problem and the hybrid prioritized worker model is proposed, which can provide a more effective structure and a faster response time minimizing a system overhead. The hybrid prioritized worker model is to combine the static and the dynamic prioritized worker model, and have a better performance than other models in response time which is an important factor in a real-time system.

  • PDF

An Algorithm for Real-Traffic Signal Control at An Isolated-Intersection (실시간 신호제어알고리즘 개발에 관한 연구)

  • Shin, Eon-Kyo;Kim, Young-Chan;Lee, Jong-Man
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.7 s.78
    • /
    • pp.161-167
    • /
    • 2004
  • While most or fixed-time control systems such as UTCS produce the signal timing plans that either maximizing bandwidth or minimizing a disutility index of delay and stops, cannot consider the fluctuation of traffic flow. One category of the traffic-response control systems, which make small changes on a predefined signal plan such as SCOOT, cannot be easily modified for feedback real-time control schemes based on observation of variables other than traffic flow. The other category, which decide to whether switch the traffic lights or not at each step of time as in PRODYN, does not adequately consider the relations between traffic flows and traffic lights at each step of time. In this paper we present a complete formulation that adequately consider the relations between traffic flows and traffic lights at each step of time. The formulation is a binary mixed integer linear programing (BMILP) that obtain traffic lights at each step for minimizing delay. Since numarical examples for application of the proposed model illustrated that the model adequately produced dynamic traffic signal plans minimizing delay at each step, the model may be expected to contribute to advanced transportation management systems (ATMS) for dynamic traffic signal control.

Dynamic Structural Response Characteristics of Stiffened Blast Wall under Explosion Loads (폭발 하중을 받는 보강된 방폭벽의 동적 구조 응답 특성에 관한 연구)

  • Kim, Sang Jin;Sohn, Jung Min;Lee, Jong Chan;Li, Chun Bao;Seong, Dong Jin;Paik, Jeom Kee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.5
    • /
    • pp.380-387
    • /
    • 2014
  • Piper Alpha disaster drew attention to the damage likely to arise from explosions and fires on an offshore platform. And great concerns have been increased to prevent these hazards. Blast wall is one of the passive safety systems; it plays a key part of minimizing the consequences. However, a buckling due to explosion loads is a factor which can reduce the strength of blast wall. The buckling often occurs between web and flange at the center of blast wall. This study aims to find a solution for reinforcing its strength by installing a flat plate at the spot where the buckling occurs. First of all, ANSYS finite element method is adopted to numerically compute the structural resistance characteristic of blast wall by using a quasi-static approach. Sequentially, the impact response characteristics of blast wall are investigated the effect on thickness of flat plate by using ANSYS/LS-DYNA. Finally, pressure-impulse diagrams (P-I diagram) are presented to permit easy assessment of structural response characteristics of stiffened blast wall. In this study, effective use is made to increase structural intensity. of blast wall and acquired important insights have been documented.

Cross-layer Simulation and Analysis for Video Transmission Quality in MANET (MANET에서 비디오 전송 품질을 위한 Cross-layer 시뮬레이션과 분석)

  • Yoon, Hyoup-Sang
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.3
    • /
    • pp.61-68
    • /
    • 2015
  • Mobile ad hoc networks (MANETs) are self-organized dynamic networks populated by mobile nodes. This paper presents the improved cross-layer approach to complement the recent works for video transmission services on MANET. We use a statistical design of experiment and analysis in order to investigate interactions between major factors of each layer effectively with minimizing ns-3 simulation run time. The proposed cross-layer approach considers MANET protocol layers (i.e., physical, network and transmission layers) and an application layer (i.e., a video encoder) as factors simultaneously. In addition, the approach defines an objective video quality metric as a response variable. The result of this paper can be applicable as a preliminary research to design an optimized video transmission application which has ability to adjust controllable factors to dynamic uncontrollable factors.

Comparison Study of the Impact Response Characteristics of Fixed Cylindrical Offshore Structures Considering Seawater Fluid Region (해수유체영역을 고려한 고정식 실린더형 해양구조물의 충격응답특성 비교연구)

  • Lee, Kangsu;Hong, Keyyong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.489-494
    • /
    • 2015
  • This research focused on minimizing the response of fixed cylindrical offshore structures to a ship impact considering the seawater fluid part. A collision between a ship and offshore structure is generally a complex problem and it is often impractical to perform rigorous finite element analyses to include all the effects and sequences during the collision. The structural behavior of a fixed cylindrical type offshore substructure with a seawater fluid part has a simpler response and small deformation due to the dissipation of impact energy. Upon applying the impact force of a ship to the cylindrical structure, the maximum acceleration, internal energy, and plastic strain are calculated for each load cases using Ls-dyna finite element software. In the maximum cases 2.0 m/s velocity, the response result for the structure was carried out to compare between having a fluid region and no fluid region. Fluid-structure interaction analysis was performed using the ALE method, which make it possible to apply a fluid region on the impact problem. The case of a fixed cylindrical type offshore structure without a seawater fluid part can be a more conservative design.