• Title/Summary/Keyword: miniaturization

Search Result 809, Processing Time 0.022 seconds

Coating Effect of Molding Core Surface by DLC and Re-Ir Coating (DLC 및 Re-Ir 코팅에 의한 성형용 코어면의 코팅 효과)

  • Kim, Hyun-Uk;Cha, Du-Hwan;Lee, Dong-Kil;Kim, Sang-Suk;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.51-56
    • /
    • 2009
  • Recently, with the increasing lightness and miniaturization of high resolution camera phones, the demand for aspheric glass lens has increased because plastic and spherical lens are unable to satisfy the required performance. An aspheric glass lens is fabricated by the high temperature and pressure molding using a tungsten carbide molding core, so precision grinding and coating technology for the molding core surface are required. This study investigates the effect of diamond-like carbon (DLC) and rhenium-iridium (Re-Ir) coating For aspheric molding core surface. The grinding conditions of the tungsten carbide molding core were obtained by design of experiments (DOE) for application in the ultra precision grinding process of the tungsten carbide molding core of the aspheric glass lens used in 5 megapixel, $4{\times}$ zoom camera phone modules. A tungsten carbide molding core was fabricated under this grinding condition and coated with the DLC and Re-Ir coating. By measurements, the effect of DLC and Re-Ir coating on the form accuracy and surface roughness of molding coer was evaluated.

Design for a Fuse Element of Sub-miniature Fuse with High Breaking Capacity Characteristics (높은 차단용량 특성을 갖는 초소형 미니어처 퓨즈의 가용체 설계)

  • Ahn, Chang Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.131-137
    • /
    • 2017
  • In order to safely protect high over current flowing into the main circuit at short-circuit without any explosion or fire, the enclosed cartridge fuse with a high interrupting capacity should be applied. But this fuse is impossible to be applied to an inner electronic circuit because of a limited space problem result from the miniaturization trend of products. Therefore, it is necessary to apply a sub-miniature fuse with a relatively small size. However the semi-enclosed fuse which is more free for an influx of air than the enclosed cartridge fuse and is possible to protect fuse elements with chemical and physical combination can be adoptable. But it has a limit of implementing the characteristic of a high breaking capacity. For these reasons, the Fe-42wt%Ni fuse elements alloy and fuse-link with less space were designed to increase a breaking capacity of sub-miniature fuse and its safety for fire and explosion was confirmed in this paper.

Thick Film Resistance Paste for Improving Reliability and TCR Properties of Embedded Resistor Board (내장형 저항 기판의 신뢰성과 TCR 개선을 위한 후막 저항 페이스트에 관한 연구)

  • Lee, S.M.;Yoo, M.J.;Park, S.D.;Kang, N.K.;Nam, S.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.1
    • /
    • pp.27-31
    • /
    • 2008
  • Due to the increasing need for miniaturization of electronic device, embedded resistor technology using thick film resistance paste to embed resistors currently mounted on the board thus effectively reducing board size, is being extensively researched. In this research, thick film resistor paste having $0.35{\sim}4k{\Omega}/sq$ range of resistivity were fabricated using mixtures of carbon black and epoxy resin. In order to adjust the TCR (temperature coefficient resistivity), TCR modifiers such as Ni-Cr alloy, $SiO_2$ powder were added and were able to improve on TCR value with $100ppm/^{\circ}C$. Finally embedded resistor board using thick film resistance paste were fabricated. Stable resistivity value and reliability results were achieved.

  • PDF

Depolarization Mechanism of Alternating-current-poled Pb(Mg1/3Nb2/3)O3-PbTiO3 Single Crystals Measured using in-situ thermally Stimulated Depolarization Current (TSDC 방법을 이용한 AC 폴링된 PMN-PT 단결정의 디폴링 메커니즘 분석)

  • Lee, Geon-Ju;Kim, Hwang-Pill;Lee, Sang-Goo;Lee, Ho-Yong;Jo, Wook
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.59-62
    • /
    • 2020
  • Currently, increasing attention is being paid to relaxor-based ferroelectric single crystals in photoacoustic images, especially for high-end applications. Among the crystals are (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-100xPT) single crystals located near their morphotropic phase boundary (x = 0.30-0.35) because of their ultrahigh piezoelectric and electromechanical coupling properties. The alternating current poling (ACP) treatment, rather than the conventional direct current poling treatment, has recently been spotlighted due to its effectiveness in enhancing the piezoelectric properties. So far, it has been suggested that the enhanced piezoelectricity originates from either a domain miniaturization to nanodomains or from an electric-field-induced monoclinic symmetry. In this study, we demonstrate by thermally stimulated depolarization current measurements that the effect of ACP is too complex to be explained using a single mechanism and that the proposed electric-field-induced monoclinic symmetry is unlikely to exist.

A Study on the Social Issues of Nanotechnology (나노기술을 둘러싼 사회적 쟁점 연구)

  • Lee Young-Hee
    • Journal of Science and Technology Studies
    • /
    • v.4 no.1 s.7
    • /
    • pp.59-82
    • /
    • 2004
  • Nanotechnology is a rapidly expanding field, focused on the creation of functional materials, devices, and systems through the control of matter on the nanometer scale. Recently many countries including Korea are rushing into promoting research and development of nanotechnology. Because the nanoscale is not just other step toward miniaturization, but a qualitatively new scale, progress in nanotechnology will have very far-reaching social, ethical, and environmental impacts. This paper aims to examine social issues and implications of nanotechnology development. To do so, this paper divides the issues around nanotechnology into several sub-issues: environmental, health-related, and societal issues. And then this paper reviews the debates and disputes around those sub-issues. Based on this review, this paper proposes some policy recommendation.

  • PDF

Unidirectional Sintering in LTCC Substrate (LTCC 기판의 일 방향 소결)

  • Sun Yong-Bin;Ahn Ju-Hwan;Kim Seuk-Buom
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.4 s.33
    • /
    • pp.37-41
    • /
    • 2004
  • As mobile communication devices use wide bands for large data transmission, Low Temperature Co-fired Ceramic(LTCC) has been a candidate for module substrate, for it provides better electrical properties and enables various embedded passive devices compared to conventional PCB. The LTCC, however, has applied in limited area because of non-uniform shrinkage. Hybrid heating was developed to raise sample temperature uniformly in a short period of time This leads to unidirectional sintering which enables sample to be sintered layer by layer from the bottom, resulting in more stable shape of interconnection at the top surface of the sample than conventional electric furnace heating. When sintering properties of substrate and electrical/mechanical properties of interconnection were compared, hybrid heating showed possibility to be applicable to substrate miniaturization and interconnection densification superior to electric furnace heating.

  • PDF

Permittivity Measurements of various Materials in 13-28GHz Band (13-28GHz 대역에서 다양한 매질의 유전율 측정)

  • Park, No-Uk;Jeong, Won-Ho;Jung, Myung-Won;Chong, Young-Jun;Kim, Jong-Ho;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.161-167
    • /
    • 2014
  • This paper presents the results of permittivities of various materials by measurements of the dielectric properties for the materials in millimeter-wave band. Since the advantages of millimeter wave band include the miniaturization, weight reduction of component and a lot of information transfer, its study has received increasing attention of researches. Also, because of the characteristics of the band have the superior straightness and the small diffractive, in the band, the analysis for the reflection and transmission characteristics of the materials will be very important. Moreover, a low interference is one of characteristics of the band due to the fact that the millimeter wave is absorbed in the materials. Therefore, in this paper, the reflection and transmission characteristics of materials are measured in the band by using the free space method. Based on the presented result, the permittivities of the materials are derived by the calculation of Nicolson-Ross Weir method.

Miniaturized X-Band Metamaterial Filter for the Ultra-Wide Stopband (차단특성의 초광대역화를 위한 X-밴드용 초소형 메타물질구조 여파기)

  • Kahng, Sung-Tek;Lim, Dong-Jin;Jang, Geon-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.59-64
    • /
    • 2009
  • In this paper, the design of a new bandstop filter with an ultra-wide stopband is proposed using the metamaterial CRLH-TL. Instead of conventional periodic structures and multi-staged CRLH-TLs, extremely small one-cell type is adopted to circumvent the setbacks of conventional filters such as the lengthened ${\lambda}_g/2$-resonator ones or alternating impedance lowpass filter, and relatively slow skirt. Besides, for a very broad stopband, a strong coupling structure including stepped impedances is suggested and the zero-order resonance is made for effective size-reduction. The validity of the proposed design is proven through the fabrication and measurement, showing the overall size less than ${\lambda}_g/10$, the stopband wider than 12 GHz, 0.7 dB of the insertion loss.

Design of Internal FM Radio Antenna for Mobile Terminal (휴대 단말기용 내장형 FM 라디오 안테나의 설계)

  • Han, Seung-Mok;Min, Kyeong-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.5
    • /
    • pp.493-500
    • /
    • 2008
  • This paper describes a design of internal frequency modulation(FM) radio antenna fur mobile terminal. In order to control of impedance at an operating frequency of the designed antenna, the lumped constant elements of R and L chip components are used. Patch and stubs located at antenna backside are added to control an exact resonance frequency and miniaturization. A fabricated antenna sire, the measured return loss, impedance, bandwidth, and gain are $40{\times}70{\times}1$ mm, -23 dB at 99 MHz, $55-j7{\Omega}$, 22 MHz($88{\sim}110$ MHz) below -10 dB, and -15 dBi, respectively. These measured results show a good agreement with simulated results. Especially, the measured gain of fabricated antenna is similar with value of a conventional ear-phone antenna in the designed frequency band. The measured radiation pattern agrees well with the calculated omni-directional pattern.

Small Size Directional Dipole Antenna for Mobile Communications (이동통신용 소형 방향성 다이폴 안테나)

  • Lee, Kwang-Jae;Woo, Duk-Jae;Kim, Sang-Jin;Lee, Jae-Wook;Lee, Taek-Kyung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.12
    • /
    • pp.1416-1426
    • /
    • 2008
  • In this paper, we present a small size and multiband directional dipole antenna for mobile communication repeaters. In the omni-directional dipole antenna, a planar reflector under the dipole provides improved directivity in front-direction with wide beamwidth. In order to miniaturize the directive dipole, the size of the reflector is reduced. A vertical stub on the reflector is proposed to enhance the front-directivity of the radiation pattern and mitigate the backward radiation due to the reduced reflector. Furthermore, we use horizontal stubs on edge of vertical stub to obtain additional reduction of the antenna size. To meet the current demand of wireless communication service, the designed antenna shows wideband characteristic by employing electromagnetic coupled two-dipoles with dual-resonance frequencies.