• Title/Summary/Keyword: mineral ions

Search Result 271, Processing Time 0.024 seconds

Comparison of Pectin Hydrogel Collection Methods in Microfluidic Device (미세유체 장치에서 수거 방법에 따른 펙틴 하이드로겔 입자의 특성 비교)

  • Kim, Chaeyeon;Park, Ki-Su;Kang, Sung-Min;Kim, Jongmin;Song, YoungShin;Lee, Chang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.740-745
    • /
    • 2015
  • This study investigated the effect of different collection methods on physical properties of pectin hydrogels in microfluidic synthetic approach. The pectin hydrogels were simply produced by the incorporation of calcium ions dissolved in continuous mineral oil. Then, different collection methods, pipetting, tubing, and settling, for harvesting pectin hydrogels were applied. The settling method showed most uniform and monodispersed hydrogels. In the case of settling, a coefficient of variation was 3.46 which was lower than pipetting method (18.60) and tubing method (14.76). Under the settling method, we could control the size of hydrogels, ranging from $30{\mu}m$ to $180{\mu}m$, by simple manipulation of the viscosity of pectin and volumetric flow rate of dispersed and continuous phase. Finally, according to the characteristics of simple encapsulation of biological materials, we envision that the pectin hydrogels can be applied to drug delivery, food, and biocompatible materials.

Effects of an aqueous red pine (Pinus densiflora) needle extract on growth and physiological characteristics of soybean (Glycine max)

  • Hwang, Jeong-Sook;Bae, Jeong-Jin;Choo, Yeon-Sik
    • Journal of Ecology and Environment
    • /
    • v.34 no.3
    • /
    • pp.279-286
    • /
    • 2011
  • The effect of allelochemicals on growth, root nodule nitrogen fixation activity, and ion patterns of soybeans were investigated. We prepared 50 g/L (T50), 100 g/L (T100), and 200 g/L (T200) extract concentrations by soaking fresh red pine needles in a nutrient solution. Adding needles to the nutrient solution increased the content of total phenolic acids, osmolality, and total ions. The total phenolic content in the T50, T100, and T200 extracts were $206{\pm}12.61$, $335{\pm}24.16$, and $603{\pm}12.30$ mg gallic acid equivalents, respectively. The $K^+$, $Mg^{2+}$, $Ca^{2+}$, and $PO_4^{3-}$ content increased by adding needles to the nutrient solutions, whereas $SO_4^{2-}$ content decreased. The growth inhibition of soybeans was proportional to the needle extract concentrations, and the T100 and T200 concentrations resulted in remarkable growth inhibition. On day 20 after treatment, dry weight and nitrogen fixation activity of the root nodules were reduced by the T100 and T200 treatments, whereas the T50 treatment was not difference from the control. After day 10, total ion content in all treatment groups was not different in comparison with the control. However, total ionic content in all treatment groups decreased significantly compared with that in the control after day 20. The lowest total ion value was found for the T200 concentration. The T200 treatment also resulted in significantly reduced $SO_4^{2-}$ content. The amounts of $Mg^{2+}$, $Ca^{2+}$, and $Mn^{2+}$ were higher than those of the control for the T50 treatment on day 10 and for T100 on day 20 after treatment. A significant increase in osmolality was observed in the T200 treatment on day 10 and in the T100 treatment on day 20. These results suggest that under severe allelochemical stress conditions, a remarkable reduction in nodule formation, nitrogen fixation activity, and ion uptake eventually resulted in a decrease in leaf production. Furthermore, increased $K^+$, $Mg^{2+}$, $Ca^{2+}$, $Mn^{2+}$, and osmolality in soybeans exposed to lower concentrations of allelochemicals than the critical stress level helped overcome the stress.

Field Survey for Well Water Quality in Hydroponic Farms (양액재배 농가의 원수 수질 조사)

  • 배종향;조영렬;이용범
    • Journal of Bio-Environment Control
    • /
    • v.4 no.1
    • /
    • pp.80-88
    • /
    • 1995
  • This survey has been conducted, mostly in inorganic ions, to get some basic data for the culture solution composition, analyzing water quality of some hydroponic farms. pH range was shown from 5.95 to 7.61 and the average of 6.75. Relatively wide range of EC, from 0.07 to 0.97 mS/cm and the average of 0.35 mS/cm were obtained. 19.5 percent of farms investigated showed over 0.5 mS/cm of EC, which means more careful culture solution composition and its management are needed in these farms. Na concentration ranged from 5.0 to 41.4 ppm and Cl concentration ranged from 10 to 99 ppm were shown and their average were 20.38 ppm and 35.16 ppm, respectively. Higher Na concentration compared to standard of 11.5 ppm was shown in 75% of farms and Higher Cl concentration compared to standard of 35.5 ppm was shown in 33.3% of farms. These concentration were considered rather high, which can cause salt accumulation in substrate mats. Ca and Mg concentrations were ranged from 1.60 to 131 ppm and 0.96 to 34.1 ppm, respectively. Average concentrations were 26.11 ppm in Ca and 8.10 ppm in Mg. In case of HCO$_3$, 24 to 295 ppm of concentration range and average of 63.13 ppm were obtained. Fe range was 0.01 to 0.87 ppm and its average was 0.14 ppm. This results showed that Fe elimination was necessary in well water.

  • PDF

A Molecular Dynamics Simulation Study of Hydroxyls in Dioctahedral Phyllosilicates (분자동역학 시뮬레이션을 이용한 이팔면체 점토광물 수산기 연구)

  • Son, Sangbo;Kwon, Kideok D.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.209-220
    • /
    • 2016
  • Clay minerals are a major player to determine geochemical cycles of trace metals and carbon in the critical zone which covers the atmosphere down to groundwater aquifers. Molecular dynamics (MD) simulations can examine the Earth materials at an atomic level and, therefore, provide detailed fundamental-level insights related to physicochemical properties of clay minerals. In the current study, we have applied classical MD simulations with clayFF force field to dioctahedral clay minerals (i.e., gibbsite, kaolinite, and pyrophyllite) to analyze and compare structural parameters (lattice parameter, atomic pair distance) with experiments. We further calculated vibrational power spectra for the hydroxyls of the minerals by using the MD simulations results. The MD simulations predicted lattice parameters and interatomic distances respectively deviated less than 0.1~3.7% and 5% from the experimental results. The stretching vibrational wavenumber of the hydroxyl groups were calculated $200-300cm^{-1}$ higher than experiment. However, the trends in the frequencies among different surface hydroxyl groups of each mineral was consistent with experimental results. The angle formed by the surface hydroxyl group with the (001) plane and hydrogen bond distances of the surface hydroxyls were consistent with experimental result trends. The inner hydroxyls, however, showed results somewhat deviated from reported data in the literature. These results indicate that molecular dynamics simulations with clayFF can be a useful method in elucidating the roles of surface hydroxyl groups in the adsorption of metal ions to clay minerals.

Food Component Characteristics of Cultured and Wild Oysters Crassostrea gigas and Ostrea denselamellos in Korea (양식산 및 자연산 굴(Crassostrea gigas, Ostrea denselamellos)의 성분 특성)

  • Lee, Yeong-Man;Lee, So-Jeong;Kim, Seon-Geun;Hwang, Young-Sook;Jeong, Bo-Young;Oh, Kwang-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.6
    • /
    • pp.586-593
    • /
    • 2012
  • To identify the food component characteristics of seven oysters(four cultured oysters and two wild oysters Crassostrea gigas and one dendely lamellated oyster Ostrea denselamellos Korean name beotgul) in Korea, the proximate, fatty/amino acid, mineral compositions, texture, color, chemical and taste compounds were investigated. The proximate compositions were not significantly different between cultured and wild oysters, whereas beotgul had lower levels of crude protein, ash and lipid content, and a higher carbohydrate content. The amino nitrogen contents of the three main types were 232.8-258.2, 160.5-213.9, and 218.5 mg/100 g, respectively, and the salinities were 1.5-1.7, 1.5-1.8, and 0.9%, respectively. Regarding the muscle texture, the shearing forces were 95-114, 105-132, and 170 g, respectively. Amounts of total amino acids of cultured, wild oysters and beotgul were 9,004-10,198, 8,165-8,942, and 7,767 mg/100 g, respectively. The major amino acids were aspartic acid (Asx), glutamic acid (Glx), proline, alanine, leucine, phenylalanine, lysine and arginine. Regarding inorganic ions, beotgul had much lower Fe and S contents than the cultured and wild oysters. The major fatty acids of cultured and wild oysters were 16:0, 18:0, 16:1n-9, 18:1n-9, 22:1n-9, 16:4n-3, 20:5n-3, and 22:6n-3, and there was little difference between the two. Beotgul had a higher polyenes ratio, i.e., 20:5n-3, and a lower monoenes ratio than the cultured and wild oysters. The free amino acid contents of cultured, wild oysters and beotgul extracts were 1,444-1,620, 1,017-1,277, and 1,144 mg/100 g, respectively, and the major free amino acids were taurine, glutamic acid, glycine, alanine, tryptophan, ornithine, and lysine. There was a little difference in the glycine, tryptophan, ornithine, and arginine contents.

Concrete Deterioration Near Coastal Area and Characteristics of Associated Secondary Mineral Formation (해안지역 콘크리트의 성능저하 현상과 이에 수반되는 이차광물의 형성 특징)

  • 이효민;황진연;진치섭
    • Economic and Environmental Geology
    • /
    • v.36 no.5
    • /
    • pp.365-374
    • /
    • 2003
  • Various deleterious chemicals can be introduced to existing concrete structures from various external sources. The deterioration of concrete by seawater attack is involved in complex processes due to various elements contained in seawater. In the present study, attention was paid to the formation of secondary minerals and characteristics of mineralogical and micro-structural changes involved in concrete deterioration caused by the influence of major seawater composition. The characteristics of deterioration occurred in existing concrete structures was carefully observed and samples were collected at many locations of coastal areas in Busan-Kyungnam. The petrographic, XRD, SEM/EDAX analyses were conducted to determine chemical, mineralogical and micro-structural changes in the aggregate and cement paste of samples. The experimental concrete deteriorations were performed using various chloride solutions (NaCl, CaCl, $MgCl_2$ and $Na_2SO_4$ solution. The experimental results were compared with the observation results in order to determine the effect of major elements in seawater on the deterioration. The alkalies in seawater appear to accelerate alkali-silica reaction (ASR). The gel formed by ASR is alkali-calcium-silica gel which known to cause severe expansion and cracking in concrete. Carbonation causes the formation of abundant less-cementitious calcite and weaken the cement paste. Progressive carbonation significantly affects on the composition and stability of some secondary minerals. Abundant gypsum generally occurs in concretes subjected to significant carbonation, but thaumasite ({$Ca_6/[Si(OH)_6]_2{\cdot}24H_2O$}${\cdot}[(SO_4)_2]{\cdot}[(CO_3))2]$) occurs as ettringite-thaumasite solid solution in concretes subjected to less significant carbonation. Experimentally, ettringite can be transformed to trichloroaluminate or decomposed by chloride ingress under controlled pH conditions. Mg ions in seawater cause cement paste deterioration by forming non-cementitious brucite and magnesium silicate hydrate (MSH).

Growth and Fruit Characteristics of Highbush Blueberry by Mulching Materials (멀칭 자재가 하이부쉬블루베리 생육 및 과실 특성에 미치는 영향)

  • Kim, Su-Jin;Lee, Dong-Hoon;Hur, Youn-Young;Im, Dong-Jun;Park, Seo-Jun;Jung, Sung-Min;Chung, Kyeong-Ho
    • Korean Journal of Organic Agriculture
    • /
    • v.28 no.2
    • /
    • pp.209-221
    • /
    • 2020
  • Highbush blueberries (Vaccinium corymbosum), 'Duke', 'Bluecrop', and 'Elliott', were applied with ground cover mulch systems to evaluate bush growth and fruit characteristics. Soil temperature variation was lower in the woodchip mulching plot. Therefore, CEC, soil pH, phosphate, mineral ions were not significantly different among mulching materials. The number of main stem was higher in woodchip > sawdust > rice husk > plastic film mulching plot, respectively. Total shoot number was also higher in organic mulching plots than in plastic film plot. However, total shoot number was not significantly different among the organic mulching plots. Fruit weight was the highest in the woodchip mulching plot of all blueberry cultivars, however, soluble sugar content, organic acidity, fruit firmness were not significantly different in mulching materials. Yield was higher in organic mulching plots than in plastic film plot in all blueberry cultivars. Especially, yield per shrub of woodchip plots was the highest about 3.6 kg in 'Duke', 2.7 kg in 'Bluecrop', and 2.6 kg in 'Elliott'. Furthermore, correlation of main stem number and yield was highly significant (r2 = 0.8413). Therefore, woodchip mulching is expected to be an eco-friendly method to increase the number of stems and the yield of blueberries.

Variations in Geochemical characteristics of the Acid Mine Drainages due to Mineral-Water Interactions in Donghae Mine Area in Taebaek, Korea (태백 동해광인일대의 물-광물의 반응에 의한 산성광산배수의 지구화학적 특성 변화)

  • 김정진;김수진
    • Economic and Environmental Geology
    • /
    • v.35 no.1
    • /
    • pp.55-66
    • /
    • 2002
  • There are several abandoned coal mines around Donghae mine area in the Taebaek coal field. Two major creeks, Soro and Sanae, are contaminated with the colored precipitates formed from the coal mine drainages. Bed rocks of the study area consist of limestone, shale, and sandstone. Limestone consisted mainly of calcite and dolomite, and shale of quartz, pyropyllite and chlorite, and sandstone of quatz and illite. Coal coal spoil dumps composed mainly of pyrite and chlorite. The oxidative dissolution of sulfide minerals leads to acid mine drainage and adds the metal ions in the stream water. The ion concentrations of Fe, Ca, Mg, Al, Si, SO$_{4}$in the stream polluted by AMD are generally higher than those in the unpolluted stream water. High concentrations of Ca and Mg, Al and Si can be resulted from dissolution of carbonate minerals such as calcite, dolomite and aluminosilicates such as chlorite, pyrophyllite. Although the Fe, Al, Si, SO$_{4}$ contents are considerbly high in the acid water released from the mine adits, they become decreased downstream due to dilution of unpolluted water and precipitation of oxide/hydroxide and sulfate minerals on the bottom of stream.

Mechanism of Collector Adsorption on Monazite (Monazite 界面上의 捕集劑 吸着機能에 關한 硏究)

  • Hyung Sup Choi;Ki Up Whang
    • Journal of the Korean Chemical Society
    • /
    • v.7 no.2
    • /
    • pp.91-95
    • /
    • 1963
  • The basic studies of adsorption characteristics of collector on monazite were made by electrophoretic measurement and by determination of the adsorption of some typical flotation collectors. By above measurements made on monazite, it is concluded that $H^+\;and\;OH^-$ are identified to act as potential determining ions and thus the electrical properties of monazite is controlled by the pH of the solution. Therefore, anionic collectors are adsorbed on positively charged surfaces and cationic collectors on negatively charged surfaces, which in turn controls the effective flotation condition with respective collectors for this mineral. These results have been correlated with its flotation behavior obtained by Hallimond tube test.

  • PDF

Optimization of Culture Conditions for Production of a High Viscosity Polysaccharide, Methylan, by Methylobacterium organophilum from Methanol. (Methylobacterium organophilum에 의한 메탄올로부터 고점도 다당류, 메틸란 생산을 위한 배양조건 최적화)

  • 최준호;이운택;김상용;오덕근;김정회
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.3
    • /
    • pp.244-249
    • /
    • 1998
  • An extracellular polysaccharide, methylan, was produced under the specific conditions by Methylobacterium organophilum from methanol. The specific growth rate of cells was approximately constant regardless of C/N ratio and the specific product yield was maximum at a C/N ratio of 30. Methylan production was suppressed by the deficiency of mineral ions such as Mn$^{++}$ or Fe$^{++}$ ion. The optimal pH for cell growth and methylan production was 7. Whereas the optimal temperature for cell growth was found to be 37$^{\circ}C$, that for methylan production was 3$0^{\circ}C$. The methanol concentration above 4% completely inhibited the cell growth. The initial methanol concentration for the maximal production of methylan was 0.5% (v/v) and above this concentration, methylan production was markedly inhibited. To overcome the substrate toxicity and inhibition for both cell growth and methylan production, a fed-bach culture of intermittent feeding within 5 g/l methanol was conducted under the optimal culture condition. Methylan production of was stimulated by nitrogen limitation and methylan was accumulated up to 8.7 g/1 and cell mass also increased up to 12.4 g/l.

  • PDF