Browse > Article
http://dx.doi.org/10.9713/kcer.2015.53.6.740

Comparison of Pectin Hydrogel Collection Methods in Microfluidic Device  

Kim, Chaeyeon (Department of Energy Science and Technology, Graduate School of Energy Science and Technology, Chungnam National University)
Park, Ki-Su (Department of Chemical Engineering, Chungnam National University)
Kang, Sung-Min (Department of Chemical Engineering, Chungnam National University)
Kim, Jongmin (Department of Chemical Engineering, Chungnam National University)
Song, YoungShin (Department of Chemical Engineering, Chungnam National University)
Lee, Chang-Soo (Department of Chemical Engineering, Chungnam National University)
Publication Information
Korean Chemical Engineering Research / v.53, no.6, 2015 , pp. 740-745 More about this Journal
Abstract
This study investigated the effect of different collection methods on physical properties of pectin hydrogels in microfluidic synthetic approach. The pectin hydrogels were simply produced by the incorporation of calcium ions dissolved in continuous mineral oil. Then, different collection methods, pipetting, tubing, and settling, for harvesting pectin hydrogels were applied. The settling method showed most uniform and monodispersed hydrogels. In the case of settling, a coefficient of variation was 3.46 which was lower than pipetting method (18.60) and tubing method (14.76). Under the settling method, we could control the size of hydrogels, ranging from $30{\mu}m$ to $180{\mu}m$, by simple manipulation of the viscosity of pectin and volumetric flow rate of dispersed and continuous phase. Finally, according to the characteristics of simple encapsulation of biological materials, we envision that the pectin hydrogels can be applied to drug delivery, food, and biocompatible materials.
Keywords
Microfluidics; Pectin; Hydrogel; Collection method; Monodisperse;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Munarin, F., Petrini, P., Tanzi, M. C., Barbosa, M. A. and Granja, P. L., "Biofunctional Chemically Modified Pectin for Cell Delivery," Soft Matter, 8, 4731-4739(2012).   DOI
2 Ngouemazong, D. E., Jolie, R. P., Cardinaels, R., Fraeye, I., Van Loey, A., Moldenaers, P. and Hendrickx, M., "Stiffness of $Ca^{2+}$-pectin Gels: Combined Effects of Degree and Pattern of Methylesterification for Various $Ca^{2+}$ Concentrations," Carbohydr. Res., 348, 69-76(2012).   DOI
3 Munarin, F., Munarin, F., Guerreiro, S. G., Grellier, M. A., Tanzi, M. C., Barbosa, M. A., Petrini, P. and Granja, P. L., "Pectin-based Injectable Biomaterials for Bone Tissue Engineering," Biomacromolecules, 12, 568-577(2011).   DOI
4 Silva, C. M., Ribeiro, A. J., Figueiredo, I. V., Goncalves, A. R. and Veiga, F., "Alginate Microspheres Prepared by Internal Gelation: Development and Effect on Insulin Stability," Int. J. Pharm., 311, 1-10(2006).   DOI
5 Jin S. H., Kim J., Jang S. C., Noh Y. M. and Lee C. S., "Stagnation of Droplet for Efficient Merging in Microfluidic System," Korean Chem. Eng. Res., 52, 106-112(2014).   DOI
6 Wieduwild, R., Krishnan, S., Chwalek, K., Boden, A., Nowak, M., Drechsel, D., Werner, C. and Zhang, Y., "Noncovalent Hydrogel Beads as Microcarriers for Cell Culture," Angew. Chem. Int. Ed., 54, 3962-3966(2015).   DOI
7 Tan, Y. C., Hettiarachchi, K., Siu, M., Pan, Y. R., Lee, A. P., "Controlled Microfluidic Encapsulation of Cells, Proteins, and Microbeads in Lipid Vesicles," J. Am. Chem. Soc., 128, 5656-5658(2006).   DOI
8 Orive, G., Hernandez, R. M., Gascon, A. R., Calafiore, R., Chang, T. M., De Vos, P., Hortelano, G., Hunkeler, D., Lacik, ShapiroI, A. J. and Pedraz J. L., "Cell Encapsulation: Promise and Progress," Nat. Med., 9, 104-107(2003).   DOI
9 Liu, K., Ding, H., Chen, Y. and Zhao, X. Z., "Droplet-based Synthetic Method Using Microflow Focusing and Droplet Fusion," Microfluid Nanofluidics, 3, 239-243(2007).   DOI
10 Hu, Y., Azadi, G. and Ardekani, A. M., "Microfluidic Fabrication of Shape-tunable Alginate Microgels: Effect of Size and Impact Velocity," Carbohydr. Polym., 120, 38-45(2015).   DOI
11 Choi, C. H., Jung, J. H., Hwang, T. S. and Lee, C. S., "In situ Microfluidic Synthesis of Monodisperse PEG Microspheres," Macromol. Res., 17, 163-167(2009).   DOI
12 Zhang, S., "Hydrogels: Wet or Let Die," Nat. Mat., 3, 7-8(2004).   DOI
13 Thakur, B. R., Singh, R. K., Handa, A. K. and Rao, M. A., "Chemistry and Uses of Pectin-a Review," Critical Reviews in Food Science & Nutrition, 37, 47-73(1997).   DOI
14 Agarwal, P., Zhao, S., Bielecki, P., Rao, W., Choi, J. K., Zhao, Y. and He, X., "One-step Microfluidic Generation of Pre-hatching Embryo-like Core-shell Microcapsules for Miniaturized 3D Culture of Pluripotent Stem Cells," Lab on a Chip, 13, 4525-4533 (2013).   DOI
15 Hoare, T. R. and Kohane, D. S., "Hydrogels in Drug Delivery: Progress and Challenges," Polymer, 49, 1993-2007(2008).   DOI
16 Lian, Z. and Ye, L., "Synthesis and Properties of Carboxylated Poly(vinyl alcohol) Hydrogels for Wound Dressings," J. Polym. Res., 22, 1-11(2015).   DOI
17 Enas M. A., "Hydrogels: Methods of Preparation, Characterisation and Applications: A Review," J. Adv. Res., 6, 105-121(2015).   DOI
18 Bajpai, A., Shukla, S. K., Bhanu, S. and Kankane, S., "Responsive Polymers in Controlled Drug Delivery," Prog. Polym. Sci., 33, 1088-1118(2008).   DOI
19 Zhao, Q. S., Ji, Q. X., Xing, K., Li, X. Y., Liu, C. S. and Chen, X. G., "Preparation and Characteristics of Novel Porous Hydrogel Films Based on Chitosan and Glycerophosphate," Carbohydr. Polym., 76, 410-416(2009).   DOI
20 Allwyn, S. R. A., Rubila, R. J. S. and Ranganathan, T. V., "A Review on Pectin: Chemistry Due to General Properties of Pectin and its Pharmaceutical Uses," Sci. Rep., 1, 550-551(2012).
21 Vinogradov, S. V., Bronich, T. K. and Kabanov, A. V., "Nanosized Cationic Hydrogels for Drug Delivery: Preparation, Properties and Interactions with Cells," Adv. Drug Deliv., 54, 135-147(2002).   DOI
22 Sjostrom, S. L., Joensson, H. N. and Svahn, H. A., "Multiplex Analysis of Enzyme Kinetics and Inhibition by Droplet Microfluidics Using Picoinjectors," Lab Chip, 13, 1754-1761(2013).   DOI
23 Park, K. J., Lee, K. G., Seok, S., Choi, B. G., Lee, M. K., Park, T. J., Park, J. Y., Kim, D. H. and Lee, S. J., "Micropillar Arrays Enabling Single Microbial Cell Encapsulation in Hydrogels," Lab Chip, 14, 1873-1879(2014).   DOI
24 Marquis, M. l., Davy, J., Fang, A. and Renard, D., "Microfluidics-Assisted Diffusion Self-Assembly: Toward the Control of the Shape and Size of Pectin Hydrogel Microparticles," Biomacromolecules, 15, 1568-1578(2014).   DOI
25 Tan, W. H. and Takeuchi, S., "Monodisperse Alginate Hydrogel Microbeads for Cell Encapsulation," Adv. Mater., 19, 2696-2701 (2007).   DOI
26 Chan, L., Lee, H. and Heng, P., "Production of Alginate Microspheres by Internal Gelation Using an Emulsification Method," Int. J. Pharm., 242, 259-262(2002).   DOI
27 Mele, E., Fragouli, D., Ruffilli, R., De Gregorio, G. L., Cingolani, R. and Athanassiou, A., "Complex Architectures Formed by Alginate Drops Floating on Liquid Surfaces," Soft Matter, 9, 6338-6343(2013).   DOI
28 Song, Y. and Lee, C. S., "In situ Gelation of Monodisperse Alginate Hydrogel in Microfluidic Channel Based on Mass Transfer of Calcium Ions," Korean Chem. Eng. Res., 52, 632-637(2014).   DOI
29 Bremond, N., Thiam, A. R. and Bibette, J., "Decompressing Emulsion Droplets Favors Coalescence," Phys. Rev. Lett., 100, 024501-024504(2008).   DOI
30 Chau, M., Abolhasani, M., Therien-Aubin, H., Li, Y., Wang, Y., Velasco, D., Tumarkin, E., Ramachandran, A. and Kumacheva, E., "Microfluidic Generation of Composite Biopolymer Microgels with Tunable Compositions and Mechanical Properties," Biomacromolecules, 15, 2419-2425(2014).   DOI
31 Lee, E. and Kim, B., "Smart Delivery System for Cosmetic Ingredients Using pH-sensitive Polymer Hydrogel Particles," Korean J. Chem. Eng., 28, 1347-1350(2011).   DOI
32 Jeong, H. H., Jin, S. H., Lee, B. J., Kim, T. and Lee, C. S., "Microfluidic Static Droplet Array for Analyzing Microbial Communication on a Population Gradient," Lab Chip, 15, 889-899(2015).   DOI
33 Lin, Y. S., Yang, C. H., Hsu, Y. Y. and Hsieh, C. L., "Microfluidic Synthesis of Tail-shaped Alginate Microparticles Using Slow Sedimentation," Electrophoresis, 34, 425-431(2013).   DOI
34 Hu, Y., Wang, Q., Wang, J., Zhu, J., Wang, H. and Yang, Y., "Shape Controllable Microgel Particles Prepared by Microfluidic Combining External Ionic Crosslinking," Biomicrofluidics, 6, 026502-026509(2012).   DOI