• Title/Summary/Keyword: mineral carbonation

Search Result 110, Processing Time 0.031 seconds

Re-carbonation of Calcined Limestone Under Oxy-Circulating Fluidized Bed Combustion Conditions (순산소 순환유동층 연소 조건에서 생석회의 재탄산화 반응)

  • Kim, Ye Bin;Gwak, You Ra;Keel, Sang In;Yun, Jin Han;Lee, See Hoon
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.856-863
    • /
    • 2018
  • In order to investigate the re-carbonation behaviors of limestones in an oxy-circulating fluidized bed combustor (Oxy-CFBC), the re-carbonation characteristics of domestic 4 different limestone samples were analyzed in a thermogravimetric analyzer (TGA-N1000) with the higher concentration of $CO_2$. Effect of reaction temperature ($600{\sim}900^{\circ}C$) and $CaCO_3$ content (77~95%) of limestones were determined and the mass change of the CaO was observed. Under the temperature of $800^{\circ}C$, the conversion rate increased with increasing reaction temperature. However, the conversion rate decreased with increasing reaction temperature over $800^{\circ}C$. In the case of $CaCO_3$ content, the conversion was remarkably different at $870^{\circ}C$. In addition, reaction rate equations for simulating the re-carbonation of limestone by using gas solid reaction models were proposed in this study.

Manufacturing Properties and Hardening Characteristic of CO2 Reactive Hardening Cement (이산화탄소 반응경화 시멘트 제조 및 경화특성 연구)

  • Ki-Yeon Moon;Byung-Ryeol Kim;Seung-Han Lee;Moon-Kwan Choi;Kye-Hong Cho;Jin-Sang Cho
    • Resources Recycling
    • /
    • v.31 no.6
    • /
    • pp.52-59
    • /
    • 2022
  • Calcium silicate based cement (CSC) is a low-carbon cement that emits less CO2 by up to 70% compared to ordinary Portland cement during its manufacture. Most developed countries have commercialized CSC, whereas Korea is still investigating the manufacturing characteristics and basic properties of CSC. This paper provides a review of methods for manufacturing CSC using domestic raw materials and discusses the possibility of CSC localization based on an evaluation of the basic physical properties of manufactured CSC. The experimental results of this study indicate that the primary mineral components of CSC were CS, C3S2 C2S, and unreacted SiO2. This suggests the possibility of manufacturing CSC using domestic raw materials that exhibit mineral compositions similar to that of theoretical CSC. The compressive strength of CSC mortar is less than 1MPa at the age of 7 d under wet curing. This implies that hydration does not affect the property development of CSC mortar. Meanwhile, during carbonation curing, the compressive strength is 56 MPa or higher after 7 d, which indicates excellent early strength development. Furthermore, results of Thermogravimetric Analysis Differential scanning calorimetry (TG/DSC) show that a significant amount of CaCO3 is formed, which is consistent with the results of previous studies. This implies that carbonation is associated significantly with the properties of CSC.

The Use of Oyster Shell Powders for Water Quality Improvement of Lakes by Algal Blooms Removal

  • Huh, Jae-Hoon;Choi, Young-Hoon;Lee, Hyun-Jae;Choi, Woo Jeong;Ramakrishna, Chilakala;Lee, Hyoung-Woo;Lee, Shin-Haeng;Ahn, Ji-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • In this year, Koreans have a shortage in agricultural and drinking water due to severe algal blooms generated in major lakes. Waste oyster shells were obtained from temporary storage near the workplace at which oysters were separated from their shells. Heating ($1000^{\circ}C$ for 1 h in air) was employed to convert raw oyster shell powders into calcium oxide powders that reacted efficiently with phosphorus and nitrogen to remove algal blooms from eutrophicated wastewater. As the dispersed amount of heated oyster shell powders was increased, water clarity and visual light penetration were improved. Coagulation, precipitation and carbonation process of the heated oyster shell powders in a water purifier facilitated removal of eutrophication nutrient such as phosphorus and nitrogen, which is both beneficial and economically viable. $CO_2$ implantation by carbonation treatment not only produced thermodynamically stable CaO in oyster shells to derive precipitated calcium carbonate (PCC) but also accelerated algal removal by activation of coagulation and precipitation process. The use of oyster shell powders led to a mean reduction of 97% in total phosphate (T-P), a mean reduction of 91% in total nitrogen (T-N) and a maximum reduction of 51% in chemical oxygen demand (COD), compared with the total pollutant load of raw algal solution. Remarkable water quality improvement of algal removal by heated oyster shell powders and PCC carbonation treatment will allow utilization as water resources to agricultural or industrial use.

Durability Characteristics of High Performance Shotcrete for Permanent Support of Large Size Underground Space (대형 지하공간의 영구지보재로서 고성능 숏크리트의 내구 특성)

  • Won, Jong-Pil;Kim, Hwang-Hee;Jang, Chang-Il;Lee, Sang-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.701-706
    • /
    • 2007
  • This study evaluated the durability of high-performance shotcrete mixed in the proper proportions using alkali-free and cement mineral accelerators as a permanent support that maintains its strength for the long term. Durability tests were performed the chloride permeability, repeated freezing and thawing, accelerated carbonation, and the effects of salt environments. Test results showed that all the shotcrete mixes included silica fume had low permeability. In addition, after 300 freeze/thaw cycles, the shotcrete mix had excellent freeze/thaw resistance more than the 85% relative dynamic modulus of elasticity. The accelerated carbonation test results were no effect of accelerator type but, the depth of carbonation was greater in the shotcrete mix containing silica fume. No damage was seen in a salt environments. Therefore, the high performance shotcrete mix proportions used in this study showed excellent durability.

Resistance to Freezing and Thawing of Concrete Subjected to Carbonation (탄산화를 받은 콘크리트의 동결융해 저항성)

  • Lee, Seung-Tae;Park, Kwang-Pil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.623-631
    • /
    • 2018
  • In this study, the degree of deterioration of concrete was investigated in the laboratory under conditions of carbonation and freeze-thaw cycling, which are the major causes of the deterioration of its performance. In this test, the carbonated concrete was subjected to combined freeze-thaw deterioration tests for up to 300 cycles, and its dynamic elastic modulus and compressive strength were measured. The evaluation of the effect of the water-binder ratio on normal concrete subjected to combined carbonization and freezing-thawing showed that its resistibility against such combined deterioration decreased more rapidly in the concrete with a water-binder ratio of 55 % compared with that having a water-binder ratio of 35 %. In the case where the concrete was blended with a mineral admixture consisting of fly ash and blast furnace slag at the same water-binder ratio, it showed an increase of its resistibility against combined deterioration.

The Extraction of Ca in Electric arc Furnace Slag for CO2 Sequestration (CO2고정화(固定化)를 위한 전기로제강(電氣爐製鋼)슬래그의 칼슘성분(成分) 침출(浸出))

  • Youn, Ki-Byoung
    • Resources Recycling
    • /
    • v.22 no.1
    • /
    • pp.64-71
    • /
    • 2013
  • Mineral carbonation has been proposed as a possible way for $CO_2$ sequestration. The electric arc furnace slags consist of calcium, magnesium and aluminum silicates in various combinations. If they could be used instead of natural mineral silicates for carbonation, considerable energy savings and $CO_2$ emissions reductions could be achieved. Indirect aqueous carbonation of the slags consists of two steps, extraction of calcium and carbonation. Acetic acid leaching of electric arc furnace slags had been already studied to extract Ca in them, but it was reported that the carbonation of the extracted $Ca^{2+}$ in the leached solution would suffer from too slow kinetics, even at high pressure of $CO_2$. In this work, to develop more efficient extraction of the electric arc furnace slags, hydrochloric acid leaching to separate calcium from them was studied, and the results were compared with the acetic acid ones. The phase boundary between $Ca^{2+}$ and $CaCO_3$ in the solution with pH was determined by thermodynamic calculations. Hydrochloric acid was more effective than acetic acid for the extraction of Ca in electric arc furnace slag, and there is a possibility to recycle an unreacted hydrochloric acid in the leached solution by electrolysis or evaporation.

CO2 Emission and Storage Evaluation of RC Underground Structure under Carbonation Considering Service Life and Mix Conditions with Fly Ash (탄산화 환경에 노출된 RC 지하구조물의 내구수명과 플라이애쉬 배합 특성을 고려한 탄소 배출 및 흡착 평가)

  • Kim, Seong-Jun;Mun, Jin-Man;Lee, Hack-Soo;Kwon, Seung-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.12
    • /
    • pp.999-1009
    • /
    • 2014
  • In this paper, $CO_2$ emission and storage amount are evaluated for real RC (Reinforced Concrete) underground structure considering $CO_2$ amount including material manufacturing, moving, and construction, repairing timing stage regarding extended service life. Four mix proportions with mineral admixtures are prepared and $CO_2$ diffusion coefficient are obtained based on a micro modeling. Referred to carbonation durability limit state, $CO_2$ emission and storage amount are evaluated, which shows higher initial $CO_2$ emission is caused due to larger unit content of cement and the storage increases with more rapid carbonation velocity. Furthermore various $CO_2$ concentration is adopted for simulation of $CO_2$ evaluation including measured $CO_2$ concentration (600ppm). With higher concentration of $CO_2$ outside, carbonation velocity increases. In order to reduce $CO_2$ emission through entire service life, reducing initial $CO_2$ emission through mineral admixture like fly ash is more effective than increasing $CO_2$ storage through OPC since $CO_2$ is significantly emitted under manufacturing OPC and $CO_2$ storage in cover concrete of RC structure is not effective considering initial concrete amount in construction.

Synthesis of amorphous calcium carbonate by gas-liquid reaction and its crystallization

  • Ahn Ji-Whan;Kim Hyung-Seok;Park Jin-Koo;Kim Ka-Yeon;Yim Going;Joo Sung-Min
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.654-657
    • /
    • 2003
  • We obtained amorphous calcium carbonate through the carbonation reaction of $Ca(OH)_2$, and through this reaction, observed changes in particle shape and phase by electric conductivity, XRD and TEM analysis. According to the result of the analysis, in the first declining stage of electric conductivity, amorphous calcium carbonate that has formed is coated on the surface of $Ca(OH)_2$ and obstructs its dissolution, and in the first recovery stage of electric conductivity, amorphous calcium carbonate is dissolved and re-precipitated and forms chains of fine calcite particles linearly joined. In the second decline of conductivity, viscosity increases due to the growth of chains of calcite particles, and finally the calcite particles are dissolved and separated into colloidal crystalline calcite, thereby increasing electric conductivity again.

  • PDF

Evaluation of Durability Performance of Wet- Mixed Shotcrete with Powder Types Cement Mineral Accelerator (시멘트 광물계 급결제를 사용한 습식 숏크리트의 내구성 평가)

  • Won Jong-Pil;Sung Sang-Kyoung;Park Chan-Gi;Cho Yong-Jin;Choi Seok-Won;Park Hae-Geun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.253-256
    • /
    • 2004
  • Recently, construction works of scale are getting larger with economic growth. Shotcreting is one of major processes in tunnels construction. Accelerator is used in tunnel and underground structures to ensure early strength of shotcrete. Silicate based accelerator and aluminate based accelerator is getting widely in the field. But these accelerators have many problems due to decesase of long-term strength and low quality of the hardened shotcrete. in order to solve these problems, recently developed powder types cement mineral accelerator. In this study, we tested chloride permeability, freezing and thawing and accelerated carbonation of shotcrete. As a result of the test, wet-mixed shotcrete with powder types cement mineral accelerator exhibited durability improvement compared to the conventional shotcrete accelerator.

  • PDF

High Temperature Thermochemical Treatment and Characterization of Sepiolite for $CO_2$ Storage ($CO_2$ 저장용 Sepiolite의 고온 열화학처리 및 특성평가)

  • Choi, Weon-Kyung;Cho, Tae-Hwan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.4
    • /
    • pp.425-433
    • /
    • 2006
  • Sepiolite was selected as a mineral carbonation candidate ore for carbon dioxide sequestration. Carbonation salt formation from alkaline earth metal ingredient needs to dehydroxylation of sepiolite at high temperature. An evident dehydroxylation was observed over $800^{\circ}C$ and the variations of sepiolite characteristics after high temperature treatment was synthetically evaluated. Remarkable weight loss were measured after high temperature thermochemical reaction then crystallographic and spectroscopic changes were analyzed. The resulted alkaline earth metal oxides could explained by dehydroxylation based on thermochemical reaction.