• Title/Summary/Keyword: mine drainage discharge

Search Result 15, Processing Time 0.025 seconds

Discharge Characteristics of Heavy Metals in Acid mine Drainage from the Abandoned Ilgwang Mine (일광 폐광산 갱내에서 유래된 산성광산배수의 중금속 유출특성)

  • Kang, Dong-Hwan;Kwon, Byung-Hyuk;Yu, Hun-Sun;Kim, Sun-Ok
    • The Journal of Engineering Geology
    • /
    • v.20 no.1
    • /
    • pp.79-87
    • /
    • 2010
  • Field water qualities (temperature, pH, Eh, EC, DO) was monitored by 6 times March to September 2009 on background water (BW) and acid mine drainage (AMD0, AMD1, AMD2 and AMD3 points), and flow rate was measured on AMD0 point. Acid mine drainage flowed out from abandoned Ilgwang mine were high acid waters that lower than pH 3, and Eh component was ranged 400 to 600 mV. EC measured on acid mine drainage were higher over 10 times than background water, DO component was increased by reaction on the air during the water flow from AMD0 point to AMD4 point. Heavy metal concentrations in acid mine drainage were ordered Fe > Cu > Zn > Mn > As > Cd, and Fe concentration was highest for 81.870~474.30 mg/L. Monitoring periods measured maximum concentrations of heavy metals were May for As and Cd, June for Fe, July for Cu, Zn and Mn. The periods measured minimum concentrations were monitored April for Cd and Mn, September for Fe, Cu, Zn and As. Discharge mass of heavy metal components were calculated 53.44 kg for Fe, 6.25 kg for Cu, 5.26 kg for Zn, 2.13 kg for Mn, 0.14 kg for As and 0.04 kg for Cd, respectively. Total discharge mass of heavy metal components were calculated 67.26 kg for 1 day, and Fe component was taken 79% of total mass.

Geochemical Reaction Processes and Controls on the Coal Mine Drainage using Pilot-scale Inclined Clarifiers (Pilot 규모의 경사판 침전지 시험을 통한 국내 석탄광산배수내 부유물질의 지구화학적 반응특성 및 조정영향)

  • Lee, SangHoon;Oh, Minah;Lee, Jai-Young;Kwon, Eunhye;Kim, Doyoung;Kim, DukMin
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.7
    • /
    • pp.73-80
    • /
    • 2013
  • Fine suspended solids from coal mine drainage were treated in the treating plant, using two different pilot-scale inclined clarifiers: radial and lamella types. Suspended solids in the mine drainage were monitored along with other geochemical factors, and metal contents. Fe and Mn are the main chemical components in the drainage, which exist predominantly as total metal forms, whereas dissolved portion is negligible. The raw mine drainage is subject to physical and chemical treatment using $CaCO_3$ and NaOH, therefore the suspended solids are thought to be composed of Fe and Mn precipitates, possibly $Fe(OH)_3$, along with carbonate precipitates. The elemental composition of precipitates are confirmed by SEM-EDS analysis. As nearly all the dissolved ions were precipitated in the primary process by $CaCO_3$, no further aeration or prolonged oxygenation are of necessity in this plant. Adoption of inclined clarifier proved to be effective in treating fine suspended solids in the current plant. Successful application of the inclined clarifier will also be beneficial to improve the current treating process by excluding the current application of chemical agent in the first stage. The final effluents from the pilot plant meet the national standards and the low dissolved Fe and Mn contents are expected not to cause secondary precipitation after discharge.

Characteristic of Acid Mine Drainage from Abandoned Mines in Kangwon-Do (강원도내 갱내 산성폐수의 수질 특성)

  • Park, Young-Goo;Park, Joon-Seok;Kim, Seung-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.252-258
    • /
    • 2004
  • This study was performed to evaluate characteristic of acid mine drainages (AMD) from abandoned mines in Kangwon-Do. Youngdong abandoned mine, and Soo and Hambaek abandoned mines in Hamtae were selected for this study. Average pHs of the mine drainages were 3-6.5, and those of Youngdong and Hambaek drainages were very acidic as 3-4. $SO_4^{-2}$ of Youngdong and Hambaek drainages were over 1,600 mg/L, which higher than average value (845 mg/L) of acid mine drainages in nationwide. Cu, Mn, and As concentrations of the drainages were lower than ‘Pollutant Discharge Permission'. Fe concentrations of Youngdong and Hambaek drainages were approximately 96 mg/L, which were two times higher than average value in nationwide. From correlation analysis using SPSS, significant correlation was not discovered between 'contaminants' analyzed in three acid mine drainages.

임기광산 폐석적치장의 수리침투특성 분석

  • 지상우;정영욱;임길재
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.394-398
    • /
    • 2004
  • This study was carried out to plan the prevention of the generation and discharge of acid mine drainage (AMD). Hydraulic characteristics were tested with the disk tension infiltrometer around the waste rock dump of the Imgi abandoned pyrophyllite mine in Busan, Korea. Because the waste rock dump of the Imgi mine have very low infiltration rate, most of rain was expected flowing into adjoined stream through the slope or plane as surface flow rather then throughflow or ground water. But slopes of the waste rock dump have many 'V' type erosion gullies and consist multi-layers. These gullies and multi-layers have coarse clastic particle layer which have very large hydraulic conductivity. So through these coarse clastic particle layers a large part of rain flow into ground. And also these layers could be played a function of aeration path, which induced oxidation of sulfide minerals and generation of AMD continuously.tinuously.

  • PDF

Investigation on the Contamination of the Vicinity of Abandoned Coal Mines Located Near the Obong Darn and Preventive Measures (오봉댐 유역의 폐탄광에 의한 오염특성과 감소방안 연구)

  • Park, Sun Hwan;Chang, Yoon Young;Jeong, Jeong Ho;Son, Jeong Ho;Park, Seok Hyo
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.2
    • /
    • pp.143-156
    • /
    • 2007
  • This study has researched the management status and the pollution level of water, soil, stream sediments of 11 abandoned coal mines out of a total of 12 within Obong-Dam area except Bukyung mine, which was submerged when constructing Obong-Dam, and selected areas which are in needs to have pollution control facilities in the first place. From the results of examination on the runoff at the waste rock pile and mineheads, the runoff from Sueun mine (pH, Fe, Al), Samwon mine (pH, Al), Wangdo mine (pH, Al), Mose mine (pH, Fe, Al) and Daeryeong mine (pH) exceeded the permissible discharge standards of the water quality, but the water at merging point with Obong-Dam after joined with Doma branch satisfied both Water Quality Standards and Drinking Water Quality Standards. In regard to groundwater contamination, it is found that areas where exceeded the Drinking Water Quality Standards are Wangdo mine (pH), Jangjae mine (pH, Zn), Daeryeong mine (pH) whereas all areas satisfied Soil Contamination Warning Standards of Soil Environmental Conservation Law. When comparing a research result on underwater sediments of branches of abandoned mines to the EPA Guidelines for classification of great lakes harbor sediments, Dongguk Gaerim (Fe), Jungwon mine (Fe), Daebo mine (Mn), Samwon mine (Mn) and Daeryeong mine (Mn) showed mid-level of contamination, whereas Sueun (Fe, Mn), Daebo mine (Fe), Woosung mine (Fe, Mn), Wangdo mine (Fe, Mn), Mose mine (Fe) and Daeryeong mine (Fe) showed high-level of contamination. In addition, contamination levels of underwater sediments in Wangsan and Doma branch where abandoned mine's branches merge together, Wangsan branch showed no contamination at all whereas Doma branch shows mid-level of contamination which reflect the Doma branch is affected by waste rock pile and minehead runoff of the abandoned mines in the Doma branch area. It is concluded that Mose mine and Sueun mine required treatment of acid mine drainage. and Wangdo, Jungwon, and Samwon mines were in need of mine tailing and erosion control work. The Samwon mine additionally required a control system for closed minehead runoff. Although the Samwon mine reached a high concentration of Al, Mn $Ca^{2+}$, $SO{_4}^{2-}$ in the runoff, the levels decreased after it was combined with a tributary. It has been concluded that after further monitoring of the cause of pollution, a preventive measure system may be needed to be built.

Geochemical Approaches for Investigation and Assessment of Heavy Metal Contamination in Abandoned Mine Sites (폐광산지역의 오염특성 조사와 평가를 위한 지구화학적 접근방법)

  • 이평구;조호영;염승준
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.35-48
    • /
    • 2004
  • This paper provides a comprehensive overview of geochemical approaches for investigating and assessing heavy metal contamination in abandoned mine sites. Major sources of contaminants at the abandoned mine sites are mine water, waste rocks, tailings, and chemicals used in beneficiation and mineral processing. Soil, sediment, surface and ground water, and ecological system can be contaminated by heavy metals, which are transported due to erosion of mine waste piles, discharge of acid mine drainage and processed water, and dispersion of dust from waste rocks and tailings. The abandoned mine sites should be characterized using various methods including chemical analysis, mineralogical analysis, acid generation prediction tests, leaching/extraction tests, and field tests. Potential and practical environmental impacts from the abandoned mines should be assessed based on the site characterization.

Characteristics of NPS Pollution from a Coal Mining (가행광산 지역의 비점오염물질 유출특성)

  • Seo, Jiyeon;Shin, Minhwan;Won, Chul-hee;Choi, Yong-hun;Jung, Myung-suk;Lim, Kyoung Jae;Choi, Joongdae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.474-481
    • /
    • 2010
  • This study was conducted to describe the characteristics of Non-point source (NPS) Pollution discharge from a coal mining area in Korea. The study areas is located on the Dogye site, Samchuk, Kangwon Province Coal Corporation and the Jangsung site, Taebaek, Kangwon Province Coal Corporation. The monitoring system was installed at a drainage channel and water samples and rainfall events were collected during March 2008 to February 2009. The collected water samples were analyzed with respect to SS, BOD, $COD_{Cr}$, $COD_{Mn}$, T-N, T-P, and TOC, respectively. It was observed that the runoff and water quality were largely influenced by mine drainage. Also a significant relationship was observed from the correlation between flow and water quality, flow and NPS. And estimated Event Mean Concentration (EMC), NPS pollution loads were Dogey coal mine and Taeback coal mine respectively. As the study progresses in the future, runoff and pollution loads will be updated.

Removal Efficiency of Heavy Metals in Acidic Mine Drainage from Microbial Mats (바이오매트 형성에 의한 산성광산배수 내 중금속 유출질량 제거효율)

  • Yu, Hun-Sun;Kwon, Byung-Hyuk;Kim, Park-Sa;So, Yoon-Hwan;Kang, Dong-Hwan
    • Journal of Environmental Science International
    • /
    • v.21 no.6
    • /
    • pp.667-676
    • /
    • 2012
  • This research investigated to reduce mass of heavy metals in AMD(acid mine drainage) by microbial mats formed on the channel bed. As, Cd, Cu, Fe, Mn and Zn components were monitored in water and microbial mats, at three points (AMD1, AMD2 and AMD3), in a total of six times. Average daily discharge mass of heavy metals was highest in July, Fe component contained more than 76% of total discharge mass. Discharge mass of heavy metals of AMD and heavy metal contents in microbial mats decreased with downstream at channel. Heavy metal components that average daily discharge mass is over 0.5 kg were Fe, Cu and Zn, and they were highest in July. Average removal efficiency of heavy metals in AMD was highest about 21% in Fe, this microbial mats were due to form from precipitation of Fe component in AMD by aerobic iron bacteria. Relative content for As component in microbial mats than AMD was over 16 times, this As components were due to absorb at iron oxide and iron hydroxide on the surface of microbial mats.

Contamination Assessment of Water Quality and Stream Sediments Affected by Mine Drainage in the Sambo Mine Creek (삼보광산 수계 하천수질 및 퇴적토의 오염도 평가)

  • Jung, Goo-Bok;Kwon, Soon-Ik;Hong, Sung-Chang;Kim, Min-Kyeong;Chae, Mi-Jin;Kim, Won-Il;Lee, Jong-Sik;Kang, Kee-Kyung
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.2
    • /
    • pp.122-128
    • /
    • 2012
  • BACKGROUND: Mine drainage from metal mining districts is a well-recognized source of environmental contamination. Oxidation of metal sulfides in mines, mine dumps and tailing impoundments produces acidic, metal-rich waters that can contaminate the local surface water and soil. METHODS AND RESULTS: This experiment was carried out to investigate the pollution assessment of heavy metal on the water quality of mine drainage, paddy soils and sediment in lower watershed affected by mine drainage of the Sambo mine. The average concentrations of dissolved Cd (0.018~0.035 mg/L) in mine drainage discharged from the main waste rock dumps(WRD) was higher than the water quality standards (0.01 mg/L) for agricultural water in Korea. Also, the average concentrations of dissolved Zn, Fe and Mn were higher than those of recommended maximum concentrations (Zn 2.0, Fe 5.0, Mn 0.2 mg/L) of trace metal in irrigation water proposed by FAO (1994). The average contents of Pb and Zn in paddy soils was higher than those of standard level for soil contamination(Pb 200, Zn 300 mg/kg) in agricultural soil by Soil Environmental Conservation Act in Korea. Also, the concentrations of Cd, Pb and Zn in sediment were higher than those of standard level for soil contamination (Cd 10, Pb 400, Zn 600 mg/L) in waterway soil by Soil Environmental Conservation Act in Korea. The enrichment factor (EFc) of heavy metals in stream sediments were in the order as Cd>Pb>Zn> As>Cu>Cr>Ni. Also, the geoaccumulation index (Igeo) of heavy metals in stream sediments were in the order as Zn>Cd>Pb>Cu>As>Cr>Ni, specially, the geoaccumulation index (Igeo) of Zn (Igeo 3.1~6.2) were relatively higher than that of other metals in sediment. CONCLUSION(s): The results indicate that stream water and sediment were affected by mine drainage discharged from the Sambo mine at least to a distance of 1 km downstream (SN-1, SN-2) of the mine water discharge point.

Monitoring of Seasonal Water Quality Variations and Environmental Contamination in the Sambo Mine Creek, Korea (삼보광산 하류 수계의 계절별 수질변화와 오염도 평가)

  • Jung, Goo-Bok;Lee, Jong-Sik;Kim, Won-Il;Ryu, Jong-Su;Yun, Sun-Gang
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.328-336
    • /
    • 2008
  • Metal mining district drainage is a well recognized source of environmental contamination. Oxidation of metal sulfides produces acidic and metal-rich waters that contaminate local surface water and ground water in mines, mine dumps, and tailing impoundments. This monitoring study was carried out to investigate the stream water quality and pollution as affected by the Sambo mine drainage in relation to the relative distance from the mine. It obvious that pH values of the mine drainage ranged from 5.8 to 6.9, while the average concentrations of the dissolved chemical constituents for EC, $SO_4^{2-}$, $K^+$, $Ca^{2+}$, and $Mg^{2+}$ were $1.77\;dS\;m^{-1}$, 929, 14.6, 263.3, and 46.9 mg/L in mine drainage discharged from the main waste rock dumps (WRD), respectively. Furthermore, EC values and sulfate concentrations exceeded the critical toxicity levels in agricultural water for rice plant ($1.0\;dS\;m^{-1}$ for EC and 54.0 mg/L for $SO_4^{2-}$). Also, the average of dissolved cadmium concentrations ($0.016{\sim}0.021\;mg/L$) was higher than water quality standard (0.01 mg/L) for agricultural water in Korea, in addition to Zn, Fe and Mn were higher than trace metals maximum concentrations which recommended by FAO for irrigation water. The results indicate that mine drainage discharged from the Sambo mine affected stream water at least to distance of 1 km downstream of the mine water discharge point. EC values, $SO_4^{2-}$ and $Ca^{2+}$ concentrations in discharged water positively correlated with dissolved Cd, Zn, Al and Mn concentrations, while the pH values negatively correlated. In addition, EC values, $SO_4^{2-}$ and $Ca^{2+}$ concentrations were negatively correlated with pH values.