• Title/Summary/Keyword: mine

Search Result 2,160, Processing Time 0.033 seconds

Distribution of Metallic Elements Contamination in River Deposits and Farmland in the Vicinity of an Abandoned Korean Mine (폐광산 인근 농경지 및 하천 퇴적토의 중금속 오염 특성)

  • Lee, Hwan;Lee, Yoonjin
    • Economic and Environmental Geology
    • /
    • v.53 no.2
    • /
    • pp.133-145
    • /
    • 2020
  • Soil in mine waste-rock fields, and at the pithead, sediments and farmlands around an abandoned mine in the Chungcheong Province of South Korea were investigated to assess the distribution of metallic elements and to understand the scope of the pollution. Reddening was observed from the mine up to a distance of 61 m. Losses of waste rock around the mine were assessed over a section of 1800 ㎥. Yellowish precipitates on the bottom of a stream were identified as ferrihydrite and goethite. For anions, a mean sulfate ion level over 773.6 mg/L was found during August in the river water samples. Mine drainage at the site was shown to have a pH of 4.9 and a sulfate concentration of 1557.8 mg/L during the August rainy season. A possible cause of the metallic element contamination in the mine is waste-rock loss, because mine waste-rock is located on the slope in this area. In conclusion, the total soil area to be treated, based on the amount that exceeded the recommended Korean soil pollution levels, was assessed to be 10,297 ㎡.

Effect of Pyrite and Indigenous Bacteria on Electricity Generation Using Mine Tailings (황철석과 토착미생물이 광미를 활용한 전기 생산에 미치는 영향)

  • Ju, Won Jung;Jho, Eun Hea;Nam, Kyoungphile
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.1
    • /
    • pp.93-98
    • /
    • 2015
  • Acid mine drainage (AMD) producing mine tailings can be beneficially recycled to generate electricity by applying fuel cell technology. Pyrite-containing mine tailings and indigenous bacteria from abandoned mine areas were used to construct fuel cells to investigate the effect of pyrite contents and the presence of iron-oxidizing bacteria. The results showed an enhanced electrical performance with a higher content of pyrite in mine tailings. The inoculation of the indigenous bacteria also enhanced the current density by about three times, and the power density by about 10 times. Overall, this study shows that the combined use of the ecological function of indigenous bacteria from mine areas and mine-tailings in fuel cells does not only contribute to reducing harmful effects of mine tailings but also generate electricity.

A Field Study on the Application of Pilot-scale Vertical Flow Reactor System into the Removal of Fe, As and Mn in Mine Drainage (현장 파일럿 실험을 통한 광산배수 내 Fe, As, Mn 자연정화처리 효율평가)

  • Kwon, Oh-Hun;Park, Hyun-Sung;Lee, JinSoo;Ji, Won Hyun
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.695-701
    • /
    • 2020
  • This study aimed to monitor a pilot-scale vertical flow reactor (VFR) system being operated in long-term for water quality control of pH-neutral mine drainage containing Fe, Mn and As, discharged in D mine site. The treatment systems of VFR and zero manganese reactor (ZMR) consisted of sand/limestone, and steel slag/limestone, respectively. The systems were operated during about six months in order to evaluate their long-term treatment efficiency It was observed that both pH and alkalinity of mine drainage were remarkably increased and more than 98% of Fe, As and Mn ions was continuously removed during the tested period of time. In conclusion, the field results of this work demonstrated that the vertical flow reactor system can effectively treat mine drainage contaminated by Fe, As and Mn.

Evaluation for Rehabilitation Countermeasures of Coal-mined Spoils and Denuded Lands (폐탄광지(廢炭鑛地)의 산림훼손지복구(山林毁損地復舊) 및 폐석유실방지대책(廢石流失防止對策)에 관한 연구(硏究))

  • Woo, Bo-Myeong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.2
    • /
    • pp.24-34
    • /
    • 2000
  • The project for rehabilitation and revegetation of the abandoned coal-mine lands is a very important national environmental restoration project in the view point of rehabilitation and revegetation of denuded forest-lands caused by coal mining as well as restoration of disturbed natural environment and control of the variable pollutions. In Korea, because a large number of coal mines had been developed in order to fill up abundantly consumption of coal as a major energy source in the developing period, a lot of denuded forest-lands caused by coal mining had distributed in the whole country. And, due to the absence of effective rehabilitation and revegetation works on the denuded forestlands caused by coal-mining, most of them had been remained with being damaged. In 1990, area of the abandoned coal-mine lands, requiring the rehabilitation and revegetation works, was about 1,437.1 ha. For the past ten years ('90~'99), about 1,081.8 ha out of them had been rehabilitated and revegetated, and the rehabilitation planning area was about 33.0 ha in 2000. So, remaining area out of abandoned coal-mine lands will be about 322.3 ha after 2000. In principle, after abandoning coal-mine, mine owners must carry out the rehabilitation and revegetation works on the abandoned mine lands by themselves. But, most of mine owners were in financial difficulty after abandoning coal-mine, so that principle couldn't have obtained the desired effects. To solve this problem, from 1995, Coal Industry Promotion Board (CIPB) have carried out the rehabilitation and revegetation works on the abandoned coal-mine lands at government budgets, and they have obtained good results in the construction area. However, due to application of the "conventional erosion control measures and techniques" to the rehabilitation and revegetation measures on the abandoned coal-mine lands, the results and effects of the works excuted have not been successful. Therefore, unique measures and techniques for rehabilitation and revegetation of the abandoned coal-mine lands will have to be developed, especially including development of new techniques on the soil-dressing and soil-covering, seed spray and hydro-seeding measures with seed-fertilizer-soil materials as the mechanized measures, and using of new materials for the tree planting and seedling measures.

  • PDF

Evaluating Efficiency of Coal Combustion Products (CCPs) and Polyacrylamide (PAM) for Mine Hazard Prevention and Revegetation in Coal Mine Area

  • Oh, Se Jin;Oh, Seung Min;Ok, Yong Sik;Kim, Sung Chul;Lee, Sang Hwan;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.525-532
    • /
    • 2014
  • Since mine wastes were merely dumped in the mine waste dump, they have produced acid mine drainage (AMD). Therefore, main objective of this study was to evaluate the effect of coal combustion products (CCPs) on heavy metal stabilization and detoxification for mine wastes. Total six treatments for incubation test were conducted depending on mixing method (completely mixing and layered). Also, lysimeter experiment was conducted to examine efficiency of polyacrylamide (PAM) on reduction of mine wastes erosion. Result of incubation test showed that concentrations of soluble aluminium (Al) and iron (Fe) in leachate decreased compared to control. The lowest soluble Al and Fe in leachate was observed in 50% mixed treatment (14.2 and $1.03mg\;kg^{-1}$ for Al and Fe respectively) compared to control treatment (253.0 for Al and $52.6mg\;kg^{-1}$ for Fe). The pH of mine wastes (MW) and leachate increased compared to control after mixing with CCPs and ordered as control (MW 6.4, leachate 6.3) < 10% (MW 7.7, leachate 7.1) < 20% (MW 9.0, leachate 7.8) < 30% (MW 9.5, leachate 8.3) < 40% (MW 9.9, leachate 8.5) < 50% (MW 10.5, leachate 8.6). Application of PAM, both in liquid and granular type, dramatically decreased the suspended solid (SS) concentration of CCPs treatments. Reduction of SS loss was ordered as MW70CR30L ($24.4mg\;L^{-1}$) > MW70CR30LPL ($6.7mg\;L^{-1}$) > NT ($3.1mg\;L^{-1}$) > MW70CR30M ($1.6mg\;L^{-1}$) > MW70CR30MPL ($1.1mg\;L^{-1}$) > MW70CR30PGM ($0.7mg\;L^{-1}$) > MW70CR30LPG ($0.5mg\;L^{-1}$) > MW70CR30MPG ($0.4mg\;L^{-1}$). Overall, application of CCPs can be environmental friendly and cost-effective way to remediate coal mine wastes contaminated with heavy metals. In addition, use of PAM could help to prevent the erosion coal mine wastes in mine waste disposal area.

The Soil and Water Pollution caused by the Weathering of Pyrophyllite Deposits: Upstream Part of Hoidong Water Reservoir in Pusan (납석광산에서 발생하는 토양 및 수질오염 실태 : 부산광역시 회동수원지 상류 지역)

  • 박맹언;김근수
    • Journal of Environmental Science International
    • /
    • v.7 no.2
    • /
    • pp.149-156
    • /
    • 1998
  • Enoronmental problems caused by certain geologic conditions Include pollution of soil by heavy metal, acidization of souls , acid mine drainage, Pound-water pollution, and natural radioactivity, as well as zoo-logical hazards such as landslide and subsidence. The acrid mine drainage contains large amount of heavy metals nO, therefore. cause serious pollution onto the nearby drainage systems and soils. In spite of this prospective environmental danger, few studies have been done on the acid mine drainage derived from non-metallic ore deposits such as pyrophyllitefNapseok) deposits. The sudo-bearing pyrophyllite ores, alteration zones, and mine talllngs of pyrophylllte deposits produce acrid mine drainage by the okidation of weathering. Compared to the fresh host rocks, the ores and altered rocks of pyrophyllite deposits produce acidic solution which contain higher amount of heavy metals because of OeP lower buffering capacity to acrid solution. The pus of urine water and nearby stream water of pyrophyllite deposits are 2.1~3.7, which are strong- ly acidic and much lower than that (6.2~7.2) of upstream water and than that (6.8~7.6) of the stream water derived from the non-mineralized area. This study reveals that this acrid mine drainage can affect the downstream area which is 8km far from the pyrophyllite deposits, even though the drain Is diluted with abundant non-contaminated river water This suggmists that not only acid mine drainage but also the sulfide-bearing sediments originated from the pyrophyllite deposits move downstream and form acidic water through continuous oxidation reaction. The heavy metals such as Pb, Zn, Cu, Cd, Nl, Mn and Fe are enriched In the mine water of low pH, and their contents decrease as the pH of mine water Increases because of the Influx of fresh stream wainer. SoUs of the Pyrophyulte deposits are characterized by high contents of heavy metals. The stream sediments containing the yellowish brown precipitates formed by neutralization of acid mine drainage occur in all parts of the stream derived from the pyrophyllite deposits, and the sediments also contain high amounts of heavy metals. In summary, the acid mine drainage of the pyrophyllite deposits is located in the upstream part of Hoidong water reservoir in Pusan contains large amounts of heavy metals and flows into the Holdong water reservoir without any purification process. To protect the water of Holdong reservoir, the acid mine drainage should be treated with a proper purification process.

  • PDF

A Study on the Basic Geometry Analysis of Abandoned Underground Mine Tunnels in Korea and Advanced Measuring-Analysis Technology for Underground Mine Cavities (한국의 폐광산 지하 채굴갱도 기초형상 분석 및 개선된 광산 지하공동 측정·분석 기술 연구)

  • Kim, Soo-Lo;Park, Sung-Bin;Choi, Byung-Hee;Yun, Jung-Mann;Jeong, Gyo-Cheol
    • Tunnel and Underground Space
    • /
    • v.26 no.6
    • /
    • pp.455-465
    • /
    • 2016
  • The collapse of underground mine development void for mineral resources can cause the subsidence of ground surface. In order to prevent the subsidence of ground, data such as maps or pictures of past mining site is important information for current mine reclamation works. In particular, mine subsidence management was based on mining maps and pictures. The process of the mining area surveys, safety evaluation, and ground reinforcement are normally possible with information such as maps and pictures in past mining. During the Japanese colonial period and 1960's, a lot of mines were developed in Korea indiscriminately. However, mining information at that time is limited to use. In the future, mining information will become even more rare. MIRECO intends to establish a realistic alternative solution. In this study, the basic numerical information of developed mine tunnels in Korea is statistically reviewed, and advanced underground cavity measuring technology was studied. 4,473 mine tunnel opening data of 1,784 abandoned mines in korea were collected and sorted. As a result of the analysis, the average value of small mine tunnel openings in Korea was 1.982 m in height and 1.959 m in width. The mean value of shape factor was analyzed as 0.485. The summary of these numerical mine data will be helpful for understanding and researching Korean abandoned mines. Therefore, the development of measurement technology for abandoned mine cavities and tunnels is expected to facilitate more effective mine subsidence management works in Korea.

Characteristics of Soil Chemical Properties in Abandoned Coal Mine Forest Rehabilitation Areas in Boryeong City, Chungcheongnam-do

  • Jung, Mun Ho;Shim, Yon Sik;Kim, Yoon Su;Park, Mi Jeong;Jung, Kang Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.744-750
    • /
    • 2015
  • The objectives of this study were to investigate soil chemical characteristics for forest rehabilitation and suggest management in abandoned coal mine areas in Boryeong City, Chungcheongnam-do. Total study sites were seven sites, and soil properties analyzed were soil pH, total organic carbon (TOC), total-N, C/N ratio, and available $P_2O_5$ (A.v. P). Average soil pH (range) was 5.9 (4.5~7.0). Three study sites (Samgwang, Shinsung1, and Shimwon1) showed lower soil pH than standard (pH 5.6~7.3) of Korea Industrial Standards (KS) for abandoned coal mine forest rehabilitation. Average contents of TOC, and total-N were 1.5% (0.1~4.7%), and 0.10% (0.03~0.23%), respectively. Five study sites where the collapsed time was less than 10 years (Wangjashingang, Wonpoong, Samgwang, Shinsung1, and Shinsung2) showed lower TOC level than standard of KS (more than 1.2%). Wangjashingang, Wonpoong, Samgwang, and Shinsung1 showed lower level of total-N than standard of KS (more than 0.09%). C/N ratio of six study sites except Shimwon1 was out of proper range (15:1~30:1). Average A.v. P (range) was $20.7mgkg^{-1}$ (4.8~63.1), less than other abandoned coal mine fores rehabilitation areas in Mungyong City, and Hwasun-gun. TOC, total N and A.v. P increased with elapsed time from forest rehabilitation, while other soil properties did not show distinct pattern. Betula platyphylla was planted in Samkwang and Sinsung where soil pH was less than KS standard. Because the growth of Betula platyphylla can be limited in acid soil, it is necessary to neutralize soil pH to proper level with some soil amendment such as lime or shell of oyster. Furthermore, TOC, total-N and A.v. P in early stage of forest rehabilitation showed lower level than proper to vegetation growth. Therefore it needs continuous monitoring of soil characteristics and fertilization for vegetation growth and influx from surrounding forest in early stage of rehabilitation.

A Study on Unmaned Underwater Vehicle Operational Performance Analysis for Mine Search Operation (무인잠수정 기뢰 탐색 효과도 분석)

  • Hwang, A-Rom;Kim, Moon-Hwan;Lee, Sim-Yong;Yoon, Jae-Moon;Kim, Chan-Ki
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.781-787
    • /
    • 2011
  • Mine countermeasure missions(MCMs) may induce the loss of human and ship because of the covert of mine. In recent years, unmanned underwater vehicles(UUVs) have emerged as viable technical solution for conductimg underwater search, surveillance, and clearance operations in support of mine countermeasure missions because of her autonomy and long time endurance capability. This paper introduces a technical approach to mine countermeasure mission effectiveness analysis and presents some simulation-based analysis results for engineering of the UUV system definition which could be support analysis of alternatives for system definition and design.

A Study on the Distribution Characteristics of Heavy Metal Concentrations in Environment around Abandoned Mines (폐금속광산 주변환경의 중금속 오염분포특성 연구)

  • 이강혁;정연훈;김병록;박진호;정종필;박현구;김요용
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.1
    • /
    • pp.17-23
    • /
    • 2004
  • This study was investigated the distribution characteristics of heavy metal concentrations in soils around abandoned mines in Pochon city. The abandoned mines were Youngjung, Yongsog and Pochon. The results were as follows: 1) Heavy metal mean concentrations in minewastes were detected Cr 100.119 mg/kg, Cu 189.400 mg/kg in Youngjung mine, Cr 198.440 mg/kg, As 160.480 mg/kg in Yongsog mine and Cr 84.680 mg/kg, Zn 50.280 mg/kg in Pochon mine. 2) The mean concentrations in soils which is around mines were Cu 62.351 mg/kg in Youngjung mine, and As 95.024 mg/kg, Hg 11.279 mg/kg in Yongsog mine. All materials in Pochon mine were detected low level. 3) The concentrations of heavy metal showed low or not detected in water system (groundwaters, streams and sediments).