Browse > Article
http://dx.doi.org/10.7745/KJSSF.2014.47.6.525

Evaluating Efficiency of Coal Combustion Products (CCPs) and Polyacrylamide (PAM) for Mine Hazard Prevention and Revegetation in Coal Mine Area  

Oh, Se Jin (Department of Biological Environment, Kangwon National University)
Oh, Seung Min (Department of Biological Environment, Kangwon National University)
Ok, Yong Sik (Department of Biological Environment, Kangwon National University)
Kim, Sung Chul (Department of Bioenvironmental Chemistry, Chungnam National University)
Lee, Sang Hwan (Technology Research Center, Korea Mine Reclamation Corporation)
Yang, Jae E. (Department of Biological Environment, Kangwon National University)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.47, no.6, 2014 , pp. 525-532 More about this Journal
Abstract
Since mine wastes were merely dumped in the mine waste dump, they have produced acid mine drainage (AMD). Therefore, main objective of this study was to evaluate the effect of coal combustion products (CCPs) on heavy metal stabilization and detoxification for mine wastes. Total six treatments for incubation test were conducted depending on mixing method (completely mixing and layered). Also, lysimeter experiment was conducted to examine efficiency of polyacrylamide (PAM) on reduction of mine wastes erosion. Result of incubation test showed that concentrations of soluble aluminium (Al) and iron (Fe) in leachate decreased compared to control. The lowest soluble Al and Fe in leachate was observed in 50% mixed treatment (14.2 and $1.03mg\;kg^{-1}$ for Al and Fe respectively) compared to control treatment (253.0 for Al and $52.6mg\;kg^{-1}$ for Fe). The pH of mine wastes (MW) and leachate increased compared to control after mixing with CCPs and ordered as control (MW 6.4, leachate 6.3) < 10% (MW 7.7, leachate 7.1) < 20% (MW 9.0, leachate 7.8) < 30% (MW 9.5, leachate 8.3) < 40% (MW 9.9, leachate 8.5) < 50% (MW 10.5, leachate 8.6). Application of PAM, both in liquid and granular type, dramatically decreased the suspended solid (SS) concentration of CCPs treatments. Reduction of SS loss was ordered as MW70CR30L ($24.4mg\;L^{-1}$) > MW70CR30LPL ($6.7mg\;L^{-1}$) > NT ($3.1mg\;L^{-1}$) > MW70CR30M ($1.6mg\;L^{-1}$) > MW70CR30MPL ($1.1mg\;L^{-1}$) > MW70CR30PGM ($0.7mg\;L^{-1}$) > MW70CR30LPG ($0.5mg\;L^{-1}$) > MW70CR30MPG ($0.4mg\;L^{-1}$). Overall, application of CCPs can be environmental friendly and cost-effective way to remediate coal mine wastes contaminated with heavy metals. In addition, use of PAM could help to prevent the erosion coal mine wastes in mine waste disposal area.
Keywords
Coal combustion products; Coal mine wastes; Erosion; Germination; Polyacrylamide;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Rai, U.N., K. Pandey, S. Sinha, A. Singh, R. Saxena and D.K. Gupta. 2004. Revegetating fly ash landfills with Prosopis juliflora L. Environ. Int. 30:293-300.   DOI   ScienceOn
2 Rios, C.A., C.D. Williams and C.L. Roberts. 2008. Removal of heavy metals from acid mine drainage (AMD) using coal fly ash, matural clinker and synthetic zeolites. J. Hazard. Mater. 156:23-35.   DOI   ScienceOn
3 Sajwan, K.S., A.K. Alva and R.F. Keefer. 2003. Chemistry of trace elements in fly ash. Kluwer Academic/Plenum Publishers, New York, USA, pp.346.
4 Sharman, N.K., S. Mitra, V. Sehgal and S. Mishra. 2012. An assessment of physical properties of coal combustion residues wr to their utilization aspects. Int. J. Environ. Protect. 2(2):31-38.
5 Singh, S.N., K. Kulshreshtha and K.J. Ahmad. 1997. Impact of fly ash soil amendment on seed germination, seeding growth and metal composition of Vicia Faba L. Ecologi. Eng. 9:203-208.   DOI   ScienceOn
6 Skoog, D.A. and J.J. Leary. 1991. Principles of instrumental analysis. Saunders College Publishing. 357-400.
7 Yang, J.E., J.G. Skousen, Y.S. Ok, K.Y. Yoo and H.J. Kim. 2006, Reclamation of abandoned coal mine waste in Korea using lime cake by-products, Mine water and the environ, 25(4):227-232.   DOI   ScienceOn
8 Yang, J.E., H.J. Kim, Y.S. Ok, J.Y. Lee and J.H. Park. 2007. Treatment of abandoned coal mine discharged waters using lime wastes. Korean J. Geosci. 11(2):111-114.   과학기술학회마을   DOI   ScienceOn
9 Yeheyis, M.B., J.Q. Shang and E.K. Yanful. 2009. Long-term evaluation of coal fly ash and mine tailings co-placement. Environ. Manage. 91:237-244.   DOI   ScienceOn
10 Yun, J.O. and I.S. Lee. 1992. Genetic phenomena for the Pb and Zn tolerance in plants. Korean J. Ecol. 15(2): 173-180.
11 Ziemkiewicz, P.F. and J. Skousen. 2000. Use of coal combustion products for reclamation. Greenland. 30:36-47.
12 Choi, B., J.E. Lim, Y.B. Choi, K.J. Lim, J.D. Choi, J.H. Joo, J.E. Yang, and Y.S. Ok. 2009. Applicability of PAM (Polyacrylamide) in soil erosion prevention: rainfall simulation experiments. Korean J. Environ. Agr. 28(3):249-257.   과학기술학회마을   DOI
13 Adriano, D.C., A.L. Page, A.A. Elseewi, A.C. Chang, and I. Straughan. 1980. Utilization and disposal of fly ash and other coal residues in terrestrial ecosystems. J. Environ. Qual. 9(3):333-344.
14 Armesto, L. and J.L. Merino. 1999. Characterization of some coal combustion solid residues. Feul. 78:613-618.
15 Carlson, C.L. and D.C. Adriano. 1993. Environmental impacts of coal combustion residues. J. Environ. Qual. 22(2):227-247.
16 Furr, A.K., T.F. Parkinson, R.A. Hinrichs, D.R. Van Campen, C.A. Bache, W.H. Gutenmann, L.E. John, I.S. Pakkala and D.J. Lisk. 1977. National survey of elements and radiocativity in fly ashes. Environ. Sci. Technol. 11(13):1194-1201.   DOI
17 Kwon, K.S., K.J. Lee, B.J. Koo and J.D. Choi. 2000. Effect of PAM on soil erosion from apline agricultural fields. Korean J. Agr. Sci. 11:91-99.
18 Gupta, A.K., S. Dwivedi, S. Sinha, R.D. Tripathi, U.N. Rai and S.N. Singh. 2007. Metal accumulation and growth perfomance of Phaseolus Vulgaris grown in fly ash amended soil. Bioresou. Technol. 98:3404-3407.   DOI   ScienceOn
19 Hearing, C.K. and W.L. Daniels. 1991. Fly ash: characteristics and use in mined land reclamation. Virginia Coal & Energy. 3:33-46.
20 Kim, K.R., G. Owens, R. Naidu and K.H. Kim. 2007. Assessment techniques of heavy metal bioavailability in soil. Korean J. Soil Sci. Fert. 40(4):311-325.   과학기술학회마을
21 Kumpiene, J., A. Lagerkvist and C. Maurice. 2008. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments. Waste Manage. 28:215-225.   DOI   ScienceOn
22 Lee, G.S. and Y.J. Song. 2010. Characterization of leaching of heavy metal and formation of acid mine drainage from coal mine tailings. J. Korean Inst. Resour. Recyc. 19(2):54-62.   과학기술학회마을
23 Lee, K. K., H.S. Cho and J.Y. Kim. 2010. The effects of cadmium on seed germination and growth of sunflower and rape. Korean J. Civil Eng. 30(1B): 101-105.   과학기술학회마을
24 Lee, S.S., C.J. Gantzer, A.L. Thompson and S.H. Anderson. 2011. Polyacrylamide efficacy for reducing soil erosion and runoff as influenced by slope. J. Soil Water Conser. 66(3):172-177.   DOI
25 Majumdar K. and N. Singh. 2007. Effect of soil amendments on sorption and mobility of metribuzin in soil. Chemosphere. 66:630-637.   DOI
26 Moon, D.H., K.H. Cheong, T.S. Kim, J.H. Kim, S.B. Choi, Y.S. Ok and O.R. Moon. 2010. Stabilization of Pb contaminated army firing range soil using calcined waste oyster shells. Korean J. Environ. Eng. 32:185-192.   과학기술학회마을
27 ME (Ministry of Environment). 2002. The Korean standard method of environmental pollutions for soil pollution.
28 Min, J.G., E.H. Park, H.S. Moon and J.K. Kim. 2005. Chemical properties and heavy metal content of forest soils around abandoned coal mine lands in the Mungyeong area. Korean J. Agr. Forest Meteorol. 7(4):265-273.   과학기술학회마을
29 Mittra, B.N., S. Karmakar, D.K. Swain and B.C. Ghosh. 2005. Fly ash-a potential source of soil amendment and a component of integrated plant nutrient supply system. Fuel. 84:1447-1451.   DOI   ScienceOn
30 NIAST. 2000. Methods of soil chemical analysis. National Institute of Agricultural Science and Technology, RDA, Suwon, Korea.
31 Oh, S.J., S.C. Kim, J.I. Ko, J.S. Lee and J.E. Yang. 2011. Evaluating stabilization efficiency of coal combustion ash (CCA) for coal mine wastes. Korean J. Soil Sci. Fert. 44(6): 1071-1079.   과학기술학회마을   DOI
32 Oh, S.J., S.C. Kim, R.Y. Kim, Y.S. Ok, H.S. Yun, S.M. Oh, J.S. Lee and J.E. Yang. 2012. Change of bioavailability in heavy metal contaminated soil by chemical amendment. Korean J. Soil Sci. Fert. 45(6):973-982.   과학기술학회마을   DOI   ScienceOn
33 Oh, S.J., H.S. Yun, S.M. Oh, S.C. Kim, R.Y. Kim, Y.H. Seo, K.S. Lee, Y.S. Ok, J.E. Yang. 2013. Effect of fly ash fertilizer on paddy soil quality and rice growth. J. Appl. Biol. Chem. 56:229-234.   DOI