• Title/Summary/Keyword: mindlin-reissner plate theory stress-resultant fields

Search Result 5, Processing Time 0.016 seconds

Automatic generation of equilibrium and flexibility matrices for plate bending elements using Integrated Force Method

  • Dhananjaya, H.R.;Nagabhushanam, J.;Pandey, P.C.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.4
    • /
    • pp.387-402
    • /
    • 2008
  • The Integrated Force Method (IFM) has been developed in recent years for the analysis of civil, mechanical and aerospace engineering structures. In this method all independent or internal forces are treated as unknown variables which are calculated by simultaneously imposing equations of equilibrium and compatibility conditions. The solution by IFM needs the computation of element equilibrium and flexibility matrices from the assumed displacement, stress-resultant fields and material properties. This paper presents a general purpose code for the automatic generation of element equilibrium and flexibility matrices for plate bending elements using the Integrated Force Method. Kirchhoff and the Mindlin-Reissner plate theories have been employed in the code. Paper illustrates development of element equilibrium and flexibility matrices for the Mindlin-Reissner theory based four node quadrilateral plate bending element using the Integrated Force Method.

Bilinear plate bending element for thin and moderately thick plates using Integrated Force Method

  • Dhananjaya, H.R.;Nagabhushanam, J.;Pandey, P.C.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.1
    • /
    • pp.43-68
    • /
    • 2007
  • Using the Mindlin-Reissner plate theory, many quadrilateral plate bending elements have been developed so far to analyze thin and moderately thick plate problems via displacement based finite element method. Here new formulation has been made to analyze thin and moderately thick plate problems using force based finite element method called Integrated Force Method (IFM). The IFM is a novel matrix formulation developed in recent years for analyzing civil, mechanical and aerospace engineering structures. In this method all independent/internal forces are treated as unknown variables which are calculated by simultaneously imposing equations of equilibrium and compatibility conditions. In this paper the force based new bilinear quadrilateral plate bending element (MQP4) is proposed to analyze the thin and moderately thick plate bending problems using Integrated Force Method. The Mindlin-Reissner plate theory has been used in the formulation of this element which accounts the effect of shear deformation. Standard plate bending benchmark problems are analyzed using the proposed element MQP4 via Integrated Force Method to study its performance with respect to accuracy and convergence, and results are compared with those of displacement based 4-node quadrilateral plate bending finite elements available in the literature. The results are also compared with the exact solutions. The proposed element MQP4 is free from shear locking and works satisfactorily in both thin and moderately thick plate bending situations.

New twelve node serendipity quadrilateral plate bending element based on Mindlin-Reissner theory using Integrated Force Method

  • Dhananjaya, H.R.;Nagabhushanam, J.;Pandey, P.C.;Jumaat, Mohd. Zamin
    • Structural Engineering and Mechanics
    • /
    • v.36 no.5
    • /
    • pp.625-642
    • /
    • 2010
  • The Integrated Force Method (IFM) is a novel matrix formulation developed for analyzing the civil, mechanical and aerospace engineering structures. In this method all independent/internal forces are treated as unknown variables which are calculated by simultaneously imposing equations of equilibrium and compatibility conditions. This paper presents a new 12-node serendipity quadrilateral plate bending element MQP12 for the analysis of thin and thick plate problems using IFM. The Mindlin-Reissner plate theory has been employed in the formulation which accounts the effect of shear deformation. The performance of this new element with respect to accuracy and convergence is studied by analyzing many standard benchmark plate bending problems. The results of the new element MQP12 are compared with those of displacement-based 12-node plate bending elements available in the literature. The results are also compared with exact solutions. The new element MQP12 is free from shear locking and performs excellent for both thin and moderately thick plate bending situations.

New nine-node Lagrangian quadrilateral plate element based on Mindlin-Reissner theory using IFM

  • Dhananjaya, H.R.;Pandey, P.C.;Nagabhushanam, J.;Ibrahim, Zainah
    • Structural Engineering and Mechanics
    • /
    • v.41 no.2
    • /
    • pp.205-229
    • /
    • 2012
  • This paper presents a new nine-node Lagrangian quadrilateral plate bending element (MQP9) using the Integrated Force Method (IFM) for the analysis of thin and moderately thick plate bending problems. Three degrees of freedom: transverse displacement w and two rotations ${\theta}_x$ and ${\theta}_y$ are considered at each node of the element. The Mindlin-Reissner theory has been employed in the formulation which accounts the effect of shear deformation. Many standard plate bending benchmark problems have been analyzed using the new element MQP9 for various grid sizes via Integrated Force Method to estimate defections and bending moments. These results of the new element MQP9 are compared with those of similar displacement-based plate bending elements available in the literature. The results are also compared with exact solutions. It is observed that the presented new element MQP9 is free from shear locking and produced, in general, excellent results in all plate bending benchmark problems considered.

New eight node serendipity quadrilateral plate bending element for thin and moderately thick plates using Integrated Force Method

  • Dhananjaya, H.R.;Pandey, P.C.;Nagabhushanam, J.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.4
    • /
    • pp.485-502
    • /
    • 2009
  • A new 8-node serendipity quadrilateral plate bending element (MQP8) based on the Mindlin-Reissner theory for the analysis of thin and moderately thick plate bending problems using Integrated Force Method is presented in this paper. The performance of this new element (MQP8) is studied for accuracy and convergence by analyzing many standard benchmark plate bending problems. This new element MQP8 performs excellent in both thin and moderately thick plate bending situations. And also this element is free from spurious/zero energy modes and free from shear locking problem.