• Title/Summary/Keyword: milling yield

Search Result 102, Processing Time 0.031 seconds

Effect of Additional Nitrogen Fertilizer Application on Decreasing of Preharvest Sprouting in Winter Wheat (질소 추비시용이 밀 수발아 억제에 미치는 영향)

  • Kim, Young-Jin;Kim, Hag-Sin;Kang, Cheon-Sik;Kim, Kyoung-Hun;Hyun, Jong-Nae;Kim, Kee-Jong;Park, Ki-Hun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.2
    • /
    • pp.169-176
    • /
    • 2013
  • Preharvest sprouting seriously reduces milling and baking quality of hard winter wheat (Triticum aestivum L.) grain. To determine the effect of nitrogen fertilizer application on decreasing of preharvest sprouting, several levels of N-fertilization were conducted in two winter wheat cv. Keumkang and Jokyung, grown in Iksan. Nitrogen fertilization is used to increase grain yield and protein content. Grain yield increased at 108kg/ha (50% increased nitrogen to the standard) application and decreased as more nitrogen was applied. There was a linear increase in grain protein contents with increasing level of nitrogen application. Germination rate, germination index and ABA sensitivity were gradually reduced by increasing of nitrogen application level. Preharvest sprouting showed a significantly correlation to germination rate but could not be correlated to protein content and falling number. A significant positive correlation was detected between preharvest sprouting and different additional nitrogen fertilizer levels.

Effect of Fertilizer Application Level considering Irrigation Water Quality on Rice (Oryza sativa L.) Productivity and Agricultural Environment (관개수질을 고려한 시비가 벼의 생산성과 농업환경에 미치는 영향)

  • Uhm, Mi-Jeong;Park, Hyun-Cheol;Kim, Kab-Cheol;Ryu, Jeong;Choi, Joung-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.1
    • /
    • pp.7-14
    • /
    • 2004
  • This study was conducted to investigate the effect on agricultural environment and crop productivity by different amount of applied fertilizer in consideration of irrigation water quality. N, P and K contents of irrigation water used in this experiment were 6.16, 0.26 and 9.37 mg/L, respectively. N, P and K Concentrations of runoff water were lower than those of inflow water during rice cultivation. N, P and K Concentrations of ponded and percolated water were changed according to the amount and time of applied fertilization. During rice cultivation in paddy soil, nitrogen balance was closed to 0 in SFT 50% (50% level of soil testing fertilization), 0.14 kg/ha, but it was 95.3 kg/ha in CF (conventional fertilization) treatment In SW 50% and STF (soil testing fertilization) treatment yield of perfect rice was not greatly different as compared with CF treatment due to the superiority of ripening rate, 1,000 grains weight and milling characteristics. Mechanical paratability of rice was excellent in NF (non fertilization) treatment, STF 50% treatment showed higher in nutrient availability and fertilizers use efficiency than other treatments.

${\beta}-Glucan$ Enrichment from Pearled Barley and Milled Barley Fractions (보리의 도정 및 제분분획을 이용한 ${\beta}-Glucan$의 강화)

  • Lee, Young-Tack;Seog, Ho-Moon;Cho, Mi-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.888-894
    • /
    • 1997
  • Two hulled and two hull-less barley varieties were investigated for ${\beta}-glucan$ enrichment. Hull-less barleys contained higher levels of total ${\beta}-glucan$ than hulled barleys, and were thus suitable as starting materials for preparing ${\beta}-glucan-rich$ fractions. Particularly, a waxy type (Suweon-291) of hull-less barley was found to have high soluble dietary fiber content containing primarily ${\beta}-glucan$, compared to the other non-waxy barley varieties. ${\beta}-Glucan$ content of barley during pearling process was measured, and the highest value was observed at the pearling yield of approximately $70{\sim}75%$. The pearled barley grains were ground and sieved to yield ${\beta}-Glucan$ enriched fractions containing up to 22% ${\beta}-glucan$. In the meanwhile, whole barley samples were directly milled by $B{\ddot{u}}hler$ mill to produce bran, shorts, break flour and reduction flour. ${\beta}-Glucan$ contents in the bran and shorts from the milled stream were relatively high, and further concentration of ${\beta}-glucan$ could be accomplished by successive sieving of the bran and shorts fractions. Pearled barley and milled stream could be used to prepare barley fractions with ${\beta}-glucan$ concentrations $2.4{\sim}3.1$ times those of the original barley grain. Water solubility of barley ${\beta}-glucan$ from pearled barley and the milled stream was in the range of $40{\sim}81%$.

  • PDF

Studies on the Varietal Difference in the Physiology of Ripening in Rice with Special Reference to Raising the Percentage of Ripened Grains (수도 등숙의 품종간차이와 그 향상에 관한 연구)

  • Su-Bong Ahn
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.14
    • /
    • pp.1-40
    • /
    • 1973
  • There is a general tendency to increase nitrogen level in rice production to insure an increased yield. On the other hand, percentage of ripened grains is getting decreased with such an increased fertilizer level. Decreasing of the percentage is one of the important yield limiting factors. Especially the newly developed rice variety, 'Tongil' is characterized by a relatively low percentage of ripened grains as compared with the other leading varieties. Therefore, these studies were aimed to finding out of some measures for the improvement of ripening in rice. The studies had been carried out in the field and in the phytotron during the period of three years from 1970 to 1972 at the Crop Experiment Station in Suwon. The results obtained from the experiments could be summarized as follows: 1. The spikelet of Tongil was longer in length, more narrow in width, thinner in thickness, smaller in the volume of grains and lighter in grain weight than those of Jinheung. The specific gravity of grain was closely correlated with grain weight and the relationship with thickness, width and length was getting smaller in Jinheung. On the other hand, Tongil showed a different pattern from Jinheung. The relationship of the specific gravity with grain weight was the greatest and followed by that with the width, thickness and length, in order. 2. The distribution of grain weight selected by specific gravity was different from one variety to another. Most of grains of Jinheung were distributed over the specific gravity of 1.12 with its peak at 1.18, but many of grains of Tongil were distributed below 1.12 with its peak at 1.16. The brown/rough rice ratio was sharply declined below the specific gravity of 1.06 in Jinheung, but that of Tongil was not declined from the 1.20 to the 0.96. Accordingly, it seemed to be unfair to make the specific gravity criterion for ripened grains at 1.06 in the Tongil variety. 3. The increasing tendency of grain weight after flowering was different depending on varieties. Generally speaking, rice varieties originated from cold area showed a slow grain weight increase while Tongil was rapid except at lower temperature in late ripening stage. 4. In the late-tillered culms or weak culms, the number of spikelets was small and the percentage of ripened grains was low. Tongil produced more late-tillered culms and had a longer flowering duration especially at lower temperature, resulting in a lower percentage of ripened grains. 5. The leaf blade of Tongil was short, broad and errect, having light receiving status for photosynthesis was better. The photosynthetic activity of Tongil per unit leaf area was higher than that of Jinheung at higher temperature, but lower at lower temperature. 6. Tongil was highly resistant to lodging because of short culm length, and thick lower-internodes. Before flowering, Tongil had a relatively higher amount of sugars, phosphate, silicate, calcium, manganese and magnesium. 7. The number of spikelets of Tongil was much more than that of Jinheung. The negative correlation was observed between the number of spikelets and percentage of ripened grains in Jinheung, but no correlation was found in Tongil grown at higher temperature. Therefore, grain yield was increased with increased number of spikelets in Tongil. Anthesis was not occurred below 21$^{\circ}C$ in Tongil, so sterile spikelets were increased at lower temperature during flowering stage. 8. The root distribution of Jinheung was deeper than that of Tongil. The root activity of Tongil evaluated by $\alpha$-naphthylamine oxidation method, was higher than that of Jinheung at higher temperature, but lower at lower temperature. It is seemed to be related with discoloration of leaf blades. 9. Tongil had a better light receiving status for photosynthesis and a better productive structure with balance between photosynthesis and respiration, so it is seemed that tongil has more ideal plant type for getting of a higher grain yield as compared with Jinheung. 10. Solar radiation during the 10 days before to 30 days after flowering seemed enough for ripening in suwon, but the air temperature dropped down below 22$^{\circ}C$ beyond August 25. Therefore, it was believed that air temperature is one of ripening limiting factors in this case. 11. The optimum temperature for ripening in Jinheung was relatively lower than that of Tongil requriing more than $25^{\circ}C$. Air temperature below 21$^{\circ}C$ was one of limiting factors for ripening in Tongil. 12. It seemed that Jinheung has relatively high photosensitivity and moderate thermosensitivity, while Tongil has a low photosensitivity, high thermosensitivity and longer basic vegetative phase. 13. Under a condition of higher nitrogen application at late growing stage, the grain yield of Jinheung was increased with improvement of percentage of ripened grains, while grain yield of Tongil decreased due to decreasing the number of spikelets although photosynthetic activity after flowering was. increased. 14. The grain yield of Jinheung was decreased slightly in the late transplanting culture since its photosynthetic activity was relatively high at lower temperature, but that of Tonil was decreased due to its inactive photosynthetic activity at lower temperature. The highest yield of Tongil was obtained in the early transplanting culture. 15. Tongil was adapted to a higher fertilizer and dense transplanting, and the percentage of ripened grains was improved by shortening of the flowering duration with increased number of seedlings per hill. 16. The percentage of vigorous tillers was increased with a denser transplanting and increasing in number of seedlings per hill. 17. The possibility to improve percentage of ripened grains was shown with phosphate application at lower temperature. The above mentioned results are again summarized below. The Japonica type leading varieties should be flowered before August 20 to insure a satisfactory ripening of grains. Nitrogen applied should not be more than 7.5kg/10a as the basal-dressing and the remained nitrogen should be applied at the later growing stage to increase their photosynthetic activity. The morphological and physiological characteristics of Tongil, a semi-dwarf, Indica $\times$ Japonica hybrid variety, are very different from those of other leading rice varieties, requring changes in seed selection by specific gravity method, in milling and in the cultural practices. Considering the peculiar distribution of grains selected by the method and the brown/rough rice ratio, the specific gravity criterion for seed selection should be changed from the currently employed 1.06 to about 0.96 for Tongil. In milling process, it would be advisable to bear in mind the specific traits of Tongil grain appearance. Tongil is a variety with many weak tillers and under lower temperature condition flowering is delayed. Such characteristics result in inactivation of roots and leaf blades which affects substantially lowering of the percentage of ripened grains due to increased unfertilized spikelets. In addition, Tongil is adapted well to higher nitrogen application. Therefore, it would be recommended to transplant Tongil variety earlier in season under the condition of higer nitrogen, phosphate and silicate. A dense planting-space with three vigorous seedlings per hill should be practiced in this case. In order to manifest fully the capability of Tongil, several aspects such as the varietal improvement, culural practices and milling process should be more intensively considered in the future.he future.

  • PDF

Growth and Grain Characteristics of Thin-Shelled High-Yielding Lines of Job's-tears (Coix lacryma-jobi L.) (율무 박피(薄皮) 다수성(多收性) 선발(選拔) 계통(系統)의 생육(生育) 및 종실특성(種實特性))

  • Lee, Jung-Il;Park, Jang-Hwan;Kim, Sok-Dong;Ahn, Byeong-Ok;Lee, Seung-Tack
    • Korean Journal of Medicinal Crop Science
    • /
    • v.1 no.1
    • /
    • pp.24-27
    • /
    • 1993
  • This study was conducted to select thin-shelled and high-yielding lines in job's-tears. Two breeding lines of Suwon 3 and Suwon 6 were selected from the local collections. These two lines were tested and investigated on their characteristics under the field condition. The heading date of Suwon 3 and Suwon 6 was later one or two days, but the maturity date was one or two days earlier than that of check variety Kim-jejong, respectively. The number of grains per hill of Suwon 3, Suwon 6 was 50%, 49% greater and the milling rate was 3.8%, 5.6% higher than that of check variety, respectively. Althought 1000 grain weight of Suwon 3 and Suwon 6 was 20g lighter and the rate of ripeness was 6%, 12% lower, the raw grain yield was 22%, 20% higher than that of check variety, respectively. The thickness of seed coat of Suwon 3 and Suwon 6 was thiner and the hardness of seed coat was lower than that of check variety, therefore the milling time was decreased 12%, 7% compare to check variety, respectively. The crude protein contents of Suwon 3 and Suwon 6 was slightly higher and the amino acid composition of Suwon 6 was similar to Kimjejong, but Suwon 3 was lower than that of check variety.

  • PDF

A Medium-Maturing and Good Quality Japonica Rice Variety, "Cheongan" (벼 중생 고품질 신품종 "청안")

  • Yang, Sae-Jun;Kim, Yeon-Gyu;Choi, Im-Soo;Cho, Young-Chan;Hwang, Hung-Goo;Hong, Ha-Cheol;Kim, Myeong-Ki;Oh, Myung-Kyu;Shin, Young-Seop;Lee, Jeom-Ho;Choi, Yong-Hwan;Choi, In-Bea;Kang, Kyung-Ho;Yea, Jong-Doo;Lee, Jeong-Heui
    • Korean Journal of Breeding Science
    • /
    • v.41 no.4
    • /
    • pp.649-653
    • /
    • 2009
  • "Cheongan" is a new japonica rice variety developed from a cross between SR15225-B-22-1-2-1 and Iksan431 in summer season, 1997 by National Institute of Crop Science, RDA. The line SR15225-B-22-1-2-1 has good canopy architecture and multi-disease and insect resistance, and Iksan431 has translucent milled rice and good eating-quality. Heading date of Cheongan is August 13 in central lowland and mid-mountainous areas. "Cheongan" having culm length of 84 cm shows relatively semi-erect pubescent leaf blade and rigid culm, tolerance to lodging with and good canopy architecture. This variety has 14 tillers per hill and 126 spikelets per panicle. It shows tolerance to heading delay and spikelet sterility comparable to Hwaseongbyeo when exposed to cold stress. Leaf senescence of Cheongan progresses slowly during the ripening stage and the viviparous germination ratio was 59 %, similar to that of Hwaseongbyo. "Cheongan" shows moderately resistance to blast disease, but susceptible to stripe virus and brown planthopper. The milled rice of "Cheongan" exhibits translucent, clear non-glutinous endosperm and medium short grain. It shows similar amylose content of 18.7%, gelatinization temperature, and similar palatability of cooked rice compared to Hwaseongbyeo. The milled rice yield of this cultivar is about 5.54 MT/ha at ordinary season culture in local adaptability test for three years. Especially, "Cheongan" has better milling properties of higher 98.4% and 73.9% in the percentage of head rice in milled rice and milling recovery of head rice, respectively, than those of Hwaseongbyeo. "Cheongan" could be adaptable to the central and mid-southern plain area, and mid-western coastal area of Korea.

In-Bin Drying of Paddy with Ambient Air: Influence of Drying Parameters on Drying Time, Energy Requirements and Quality (상온통풍에 의한 벼의 In-Bin 건조 : 건조시간, 에너지 소요량 및 품질에 미치는 건조조건의 영향)

  • Cheigh, Hong-Sik;Muhlbauer, Werner;Rhim, Jong-Whan;Shin, Myung-Gon
    • Korean Journal of Food Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.25-32
    • /
    • 1985
  • Low-temperature in-bin paddy drying has been examined to study the limitations of this drying method under Korean weather conditions, the initial moisture content of the paddy, the bulk depth and the airflow rate. The results are reported and discussed with regard to drying time, energy requirements and costs, uniformity in the moisture content of the dried kernels and, finally, the quality of the paddy. The tests carried out during the paddy-drying period in 1981 and 1982 have shown that under Korean weather conditions paddy can be dried to safe storage conditions by continuous aeration with ambient air. Depending upon the initial moisture content of the kernels(19.2%-25.5% w.b.), the bulk depth(1.1-3.5m) and the airflow $(3.0-6.9m^3\;air/m^3\;paddy/min)$ the paddy could be dried within 5 to 17 days. The energy requirements and energy costs are shown to be considerably lower than for conventional high-temperature drying. No significant changes in the quality in terms of milling yield, cracking ratio, acid value and germination were observed.

  • PDF

Integrating UAV Remote Sensing with GIS for Predicting Rice Grain Protein

  • Sarkar, Tapash Kumar;Ryu, Chan-Seok;Kang, Ye-Seong;Kim, Seong-Heon;Jeon, Sae-Rom;Jang, Si-Hyeong;Park, Jun-Woo;Kim, Suk-Gu;Kim, Hyun-Jin
    • Journal of Biosystems Engineering
    • /
    • v.43 no.2
    • /
    • pp.148-159
    • /
    • 2018
  • Purpose: Unmanned air vehicle (UAV) remote sensing was applied to test various vegetation indices and make prediction models of protein content of rice for monitoring grain quality and proper management practice. Methods: Image acquisition was carried out by using NIR (Green, Red, NIR), RGB and RE (Blue, Green, Red-edge) camera mounted on UAV. Sampling was done synchronously at the geo-referenced points and GPS locations were recorded. Paddy samples were air-dried to 15% moisture content, and then dehulled and milled to 92% milling yield and measured the protein content by near-infrared spectroscopy. Results: Artificial neural network showed the better performance with $R^2$ (coefficient of determination) of 0.740, NSE (Nash-Sutcliffe model efficiency coefficient) of 0.733 and RMSE (root mean square error) of 0.187% considering all 54 samples than the models developed by PR (polynomial regression), SLR (simple linear regression), and PLSR (partial least square regression). PLSR calibration models showed almost similar result with PR as 0.663 ($R^2$) and 0.169% (RMSE) for cloud-free samples and 0.491 ($R^2$) and 0.217% (RMSE) for cloud-shadowed samples. However, the validation models performed poorly. This study revealed that there is a highly significant correlation between NDVI (normalized difference vegetation index) and protein content in rice. For the cloud-free samples, the SLR models showed $R^2=0.553$ and RMSE = 0.210%, and for cloud-shadowed samples showed 0.479 as $R^2$ and 0.225% as RMSE respectively. Conclusion: There is a significant correlation between spectral bands and grain protein content. Artificial neural networks have the strong advantages to fit the nonlinear problem when a sigmoid activation function is used in the hidden layer. Quantitatively, the neural network model obtained a higher precision result with a mean absolute relative error (MARE) of 2.18% and root mean square error (RMSE) of 0.187%.

High Strength Nanostructured Metastable Alloys

  • Eckert, Jurgen;Bartusch, Birgit;Schurack, Frank;He, Guo;Schultz, Ludwig
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.394-408
    • /
    • 2002
  • Nanostructured high strength metastable Al-, Mg- and Ti-based alloys containing different amorphous, quasicrystalline and nanocrystalline phases are synthesized by non-equilibrium processing techniques. Such alloys can be prepared by quenching from the melt or by powder metallurgy techniques. This paper focuses on one hand on mechanically alloyed and ball milled powders containing different volume fractions of amorphous or nano-(quasi)crystalline phases, consolidated bulk specimens and, on the other hand. on cast specimens containing different constituent phases with different length-scale. As one example. $Mg_{55}Y_{15}Cu_{30}$- based metallic glass matrix composites are produced by mechanical alloying of elemental powder mixtures containing up to 30 vol.% $Y_2O_3$ particles. The comparison with the particle-free metallic glass reveals that the nanosized second phase oxide particles do not significantly affect the glass-forming ability upon mechanical alloying despite some limited particle dissolution. A supercooled liquid region with an extension of about 50 K can be maintained in the presence of the oxides. The distinct viscosity decrease in the supercooled liquid regime allows to consolidate the powders into bulk samples by uniaxial hot pressing. The $Y_2O_3$ additions increase the mechanical strength of the composites compared to the $Mg_{55}Y_{15}Cu_{30}$ metallic glass. The second example deals with Al-Mn-Ce and Al-Cu-Fe composites with quasicrystalline particles as reinforcements, which are prepared by quenching from the melt and by powder metallurgy. $Al_{98-x}Mn_xCe_2$ (x =5,6,7) melt-spun ribbons containing a major quasicrystalline phase coexisting with an Al-matrix on a nanometer scale are pulverized by ball milling. The powders are consolidated by hot extrusion. Grain growth during consolidation causes the formation of a micrometer-scale microstructure. Mechanical alloying of $Al_{63}Cu_{25}Fe_{12}$ leads to single-phase quasicrystalline powders. which are blended with different volume fractions of pure Al-powder and hot extruded forming $Al_{100-x}$$(Al_{0.63}Cu_{0.25}Fe_{0.12})_x$ (x = 40,50,60,80) micrometer-scale composites. Compression test data reveal a high yield strength of ${\sigma}_y{\geq}$700 MPa and a ductility of ${\varepsilon}_{pl}{\geq}$5% for than the Al-Mn-Ce bulk samples. The strength level of the Al-Cu-Fe alloys is ${\sigma}_y{\leq}$550 MPa significantly lower. By the addition of different amounts of aluminum, the mechanical properties can be tuned to a wide range. Finally, a bulk metallic glass-forming Ti-Cu-Ni-Sn alloy with in situ formed composite microstructure prepared by both centrifugal and injection casting presents more than 6% plastic strain under compressive stress at room temperature. The in situ formed composite contains dendritic hcp Ti solid solution precipitates and a few $Ti_3Sn,\;{\beta}$-(Cu, Sn) grains dispersed in a glassy matrix. The composite micro- structure can avoid the development of the highly localized shear bands typical for the room temperature defor-mation of monolithic glasses. Instead, widely developed shear bands with evident protuberance are observed. resulting in significant yielding and homogeneous plastic deformation over the entire sample.

Optimal Conditions for Anthocyanin Extraction from Black Rice Bran and Storage Stability of Anthocyanin Extract (흑미 미강으로부터 안토시아닌의 최적 추출 조건 및 안토시아닌 추출 분말의 저장 안정성)

  • Kim, Hyo Ju;Wee, Ji-Hyang;Yang, Eun Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.10
    • /
    • pp.1543-1549
    • /
    • 2015
  • Black rice bran, a by-product from rice milling process, is a good natural source of anthocyanin pigment. The purpose of this study was to determine the optimum conditions for anthocyanin extraction from black rice bran as well as the stability of anthocyanin extract according to different storage temperatures. The main anthocyanin in 'Heugkwang' rice bran was identified as cyanidine-3-glucoside (C3G) by HPLC and LC-MS/MS. The yield and C3G content of black rice bran extract were investigated with various extraction solvents, temperatures, and times. The results indicate that the optimum extraction solvent, temperature, and time were 50% ethanol, $70^{\circ}C$, and 2 h, respectively. The stability of anthocyanin extract was studied during a storage period of 168 days at various temperatures ($-20^{\circ}C$, $4^{\circ}C$, and room temperature). Hunter's values (L, a, and b) of anthocyanin extract increased, whereas C3G content continuously decreased up to 168 days. Variations in Hunter's values and C3G content become larger as storage temperature increased. Anthocyanin extract from black rice bran was very stable, as C3G content after storage at all temperatures was maintained at more than 90% of initial content. These results suggest that anthocyanin extract from black rice bran may be useful as a natural food colorant.