• Title/Summary/Keyword: millimeter-wave frequency conversion

Search Result 29, Processing Time 0.036 seconds

High Conversion Gain Q-band Active Sub-harmonic Mixer Using GaAs PHEMT

  • Uhm, Won-Young;Lee, Bok-Hyung;Kim, Sung-Chan;Lee, Mun-Kyo;Sul, Woo-Suk;Yi, Sang-Yong;Kim, Yong-Hoh;Rhee, Jin-Koo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.2
    • /
    • pp.89-95
    • /
    • 2003
  • In this paper, we have designed and fabricated high conversion gain Q-band active sub-harmonic mixers for a receiver of millimeter wave wireless communication systems. The fabricated active sub-harmonic mixer uses 2nd harmonic signals of a low local oscillator (LO) frequency. The fabricated mixer was successfully integrated by using $0.1{\;}\mu\textrm{m}$GaAs pseudomorphic high electron mobility transistors (PHEMTs) and coplanar waveguide (CPW) structures. From the measurement, it shows that maximum conversion gain of 4.8 dB has obtained at a RF frequency of 40 GHz for 10 dBm LO power of 17.5 GHz. Conversion gain from the fabricated sub-harmonic mixer is one of the best reported thus far. And a phase noise of the 2nd harmonic was obtained -90.23 dBc/Hz at 100 kHz offset. The active sub-harmonic mixer also ensure a high degree of isolations, which are -35.8 dB from LO-to-IF and -40.5 dB from LO-to-RF, respectively, at a LO frequency of 17.5 GHz.

Low Conversion Loss 94 GHz MHEMT MIMIC Resistive Mixer (낮은 변환손실 특성의 94 GHz MHEMT MIMIC Resistive 믹서)

  • An Dan;Lee Bok-Hyung;Lim Byeong-Ok;Lee Mun-Kyo;Oh Jung-Hun;Baek Yong-Hyun;Kim Sung-Chan;Park Jung-Dong;Shin Dong-Hoon;Park Hyung-Moo;Park Hyun-Chang;Kim Sam-Dong;Rhee Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.5 s.335
    • /
    • pp.61-68
    • /
    • 2005
  • In this paper, low conversion loss 94 GHz MIMIC resistive mixer was designed and fabricated. The $0.1{\mu}m$ InGaAs/InAlAs/GaAs Metamorphic HEMT, which is applicable to MIMIC's, was fabricated. The DC characteristics of MHEMT are 665 mA/mm of drain current density, 691 mS/mm of maximum transconductance. The current gain cut-off frequency(fT) is 189 GHz and the maximum oscillation frequency(fmax) is 334 GHz. A 94 GHz resistive mixer was fabricated using $0.1{\mu}m$ MHEMT MIMIC process. From the measurement, the conversion loss of the 94 GHz resistive mixer was 8.2 dB at an LO power of 10 dBm. P1 dB(1 dB compression point) of input and output were 9 dBm and 0 dBm, respectively. LO-RF isolations of resistive mixer was obtained 15.6 dB at 94.03 GHz. We obtained in this study a lower conversion loss compared to some other resistive mixers in W-band frequencies.

94-GHz Single Balanced Mixer (94 GHz Single-Balanced 믹서의 설계 및 제작에 관한 연구)

  • Hong, Seung-Hyun;Lee, Mun-Kyo;Lee, Sang-Jin;Baek, Tae-Jong;Han, Min;Baek, Young-Hyun;Choi, Seok-Gyu;Rhee, Jin-Koo
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.411-412
    • /
    • 2008
  • The high performance 94 GHz MMIC(Monolithic Micro-wave Integrated Circuit) single balanced mixer was designed and fabricated, using MHEMT structure based diodes and a CPW(Coplanar Waveguide) tandem coupler. A novel single-balanced structure of diode mixer is proposed in this work, where a 3-dB tandem coupler with two section of parallel-coupled line. Implemented air-bridge crossover structures achieve wide frequency operation and the fabricated mixer exhibits excellent LO-RF isolation, larger than 30 dB, in the 5 GHz bandwidth of 91-96 GHz. A good conversion loss of 7.4 dB is measured at 94 GHz. The proposed MHEMT-based diode mixer shows superior LO-RF isolation and conversion loss to those of the W-band mixers reported to date.

  • PDF

Numerical Study on Frequency Up-conversion in USPR using MATLAB

  • Roh, Young-Su
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.497-502
    • /
    • 2010
  • In this paper, the O-mode ultrashort-pulse reflectometry (USPR) millimeter-wave signals that propagate into the plasma and cover a frequency bandwidth of 33-158 GHz are examined numerically using MATLAB. Two important processes are involved in the computation: the propagation of the USPR impulse signal through a waveguide and the frequency up-conversion using millimeter-wave mixers. These mixers are limited to intermediate frequency signals that are less than 500 mV; thus, it is necessary to disperse the impulse signal into a chirped waveform using the waveguide. The stationary phase method is utilized to derive a closed-form formula for a chirped waveform under the assumption that the USPR impulse is Gaussian. In the process of frequency up-conversion, the chirped waveform is mixed with the mixer LO signal, and the lower frequency components of the RF signal are removed using high pass filters.

High-performance 94 GHz Single Balanced Mixer Based on 70 nm MHEMTs and DAML Technology (70 nm MHEMT와 DAML 기반의 하이브리드 링 커플러를 이용한 우수한 성능의 94 GHz 단일 평형 혼합기)

  • Kim, Sung-Chan;Lim, Byoung-Ok;Beak, Tae-Jong;Shin, Dong-Hoon;Rhee, Jin-Koo
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.857-860
    • /
    • 2005
  • We reported 94 GHz, low conversion loss, and high isolation single balanced active-gate mixer based on 70 nm gate length InGaAs/InAlAs metamorphic high electron mobility transistors (MHEMTs). This mixer showed that the conversion loss and isolation characteristics were 2.5 ${\sim}$ 2.8 dB and under -30 dB, respectively, in the range of 93.65 ${\sim}$ 94.25 GHz. The low conversion loss of the mixer is mainly attributed to the high-performance of the MHEMTs exhibiting a maximum drain current density of 607 mA/mm, a extrinsic transconductance of 1015 mS/mm, a current gain cutoff frequency ($f_t$) of 330 GHz, and a maximum oscillation frequency ($f_{max}$) of 425 GHz. High isolation characteristics are due to hybrid ring coupler which adopted dielectric-supported air-gapped microstrip line (DAML) structure using surface micromachined technology. To our knowledge, these results are the best performance demonstrated from 94 GHz single balanced mixer utilizing GaAs-based HEMTs in terms of conversion loss as well as isolation characteristics.

  • PDF

High LO-RF Isolation 94 GHz MMIC Single-balanced Mixer (높은 LO-RF 격리 특성의 94 GHz MMIC Single-balanced Mixer)

  • An, Dan;Lee, Bok-Hyung;Lim, Byeong-Ok;Kim, Sung-Chan;Lee, Sang-Jin;Lee, Mun-Kyo;Shin, Dong-Hoon;Park, Hyung-Moo;Park, Hyun-Chang;Kim, Sam-Dong;Rhee, Jin-Koo
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.765-768
    • /
    • 2005
  • In this paper, high LO-RF isolation 94 GHz MMIC single-balanced mixer was designed and fabricated using a branch line coupler and a ${\lambda}/4$ transmission line. The 94 GHz MMIC single-balanced mixer was designed using the 0.1 ${\mu}m$ InGaAs/InAlAs/GaAs Metamorphic HEMT(MHEMT) diode. The fabricated MHEMT was obtained the cut-off frequency($f_T$) of 189 GHz and the maximum oscillation frequency($f_{max}$) of 334 GHz. The designed MMIC single-balanced mixer was fabricated using 0.1 ${\mu}m$ MHEMT MMIC process. From the measurement, the conversion loss of the single-balanced mixer was 23.1 dB at an LO power of 10 dBm. The LO-RF isolations of single-balanced mixer was obtained 45.5 dB at 94.19 GHz. We obtained in this study a higher LO-RF isolation compared to some other balanced mixers in millimeter-wave frequencies.

  • PDF

Fabrications of Low Conversion Loss and High LO-RF Isolation 94 GHz Resistive Mixer (낮은 변환손실과 높은 LO-RF 격리도 특성을 갖는 94 GHz Resistive Mixer 의 제작)

  • Lee, Bok-Hyung;Rhee, Jin-Koo
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.921-924
    • /
    • 2005
  • We report low conversion loss and high LO to RF isolation 94 GHz MMIC resistive mixers based on 0.1 ${\mu}m$ InGaAs/InAlAs/GaAs metamorphic HEMT technology. The fabricated resistive mixers applied a one-stage amplifier on RF port of the mixer. By using the one-stage amplifier, we obtained the decrement of conversion loss and the increment of LO to RF isolation. So, we can obtain higher performances than conventional resistive mixers. The modified mixer shows excellent conversion loss of 6.7 dB at a LO power of 10 dBm. We also observed an extremely high isolation characteristic from the MMICs exhibiting the LO-RF isolation of 21 ${\pm}$ 0.5dB in a frequency range of 93.7${\sim}$ 94.3 GHz. The low conversion loss and high LO-RF isolation characteristics of the MMIC modified resistive mixers are mainly attributed to the performance of the MHEMTs exhibiting a maximum transconductance of 654 mS/mm, a current gain cut-off frequency of 173 GHz and a maximum oscillation frequency of 271 GHz.

  • PDF

Design and fabrication of the MMIC frequency doubler for 29 GHz local oscillator application (29GHz 국부 발진 신호용 MMIC 주파수 체배기의 설계 및 제작)

  • Kim, Jin-Sung;Lee, Seong-Dae;Lee, Bok-Hyoung;Kim, Sung-Chan;Sul, Woo-Suk;Lim, Byeong-Ok;Kim, Sam-Dong;Park, Hyun-Chang;Park, Hyung-Moo;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.11
    • /
    • pp.63-70
    • /
    • 2001
  • We demonstrate the MMIC (monolithic microwave integrated circuit) frequency doublers generating stable and low-cost 29 GHz local oscillator signals from 14.5 GHz input signals. These devices were designed and fabricated by using the M MIC integration process of $0.1\;{\mu}m$ gate-length PHEMTs (pseudomorphic high electron mobility transistors) and passive components. The measurements showed S11 or -9.2 dB at 145 GHz, S22 of -18.6 dG at 29 GHz and a minimum conversion loss of 18.2 dB at 14.5 GHz with an input power or 6 dBm. Fundamental signal of 14.5 GHz were suppressed below 15.2 dBe compared to the second harmonic signal at the output port, and the isolation characteristics of fundamental signal between the input and the output port were maintained above :i0 dB in the frequency range 10.5 GHz to 18.5 GHz. The chip size of the fabricated MMIC frequency doubler is $1.5{\times}2.2\;mm^2$.

  • PDF

Single Balanced Monolithic Diode Mixer using Marchand Balun for Millimeter-wave Applications

  • Ryu, Keun-Kwan;Kim, Sung-Chan
    • Journal of IKEEE
    • /
    • v.16 no.2
    • /
    • pp.127-130
    • /
    • 2012
  • In this paper, we reported on a single balanced monolithic diode mixer using Marchand balun for millimeter-wave applications. The single balanced monolithic mixer was fabricated using drain-source-connected pseudomorphic high electron mobility transistor (PHEMT) diodes considering the PHEMT MMIC full process. The average conversion loss is 16 dB in the RF frequency range of 81~86 GHz at LO frequency of 75 GHz with LO power of 10 dBm. The RF-to-LO isolation characteristics are greater than -30 dB and the total chip size is $1.0mm{\times}1.35mm$.

High Performance MMIC Star Mixer for Millimeter-wave Applications (밀리미터파 응용을 위한 우수한 성능의 MMIC Star 혼합기)

  • Ryu, Keun-Kwan;Yom, In-Bok;Kim, Sung-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10A
    • /
    • pp.847-851
    • /
    • 2011
  • In this paper, we reported on a high performance MMIC star mixer for millimeter-wave applications. The star mixer was fabricated using drain-source-connected pseudomorphic high electron mobility transistor (PHEMT) diodes considering the PHEMT MMIC full process on 2 mil thick GaAs substrate. The average conversion loss of 13 dB was measured in the RF frequency range of 81 GHz to 86 GHz at LO frequency of 75 GHz with LO power of 10 dBm. The RF-LO isolation characteristics are greater than 30 dB and the input 1-dB compression are approximately 4 dBm. The total chip size is 0.8 mm ${\times}$ 0.8 mm.