• Title/Summary/Keyword: millimeter-band

Search Result 281, Processing Time 0.033 seconds

High Conversion Gain Q-band Active Sub-harmonic Mixer Using GaAs PHEMT

  • Uhm, Won-Young;Lee, Bok-Hyung;Kim, Sung-Chan;Lee, Mun-Kyo;Sul, Woo-Suk;Yi, Sang-Yong;Kim, Yong-Hoh;Rhee, Jin-Koo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.2
    • /
    • pp.89-95
    • /
    • 2003
  • In this paper, we have designed and fabricated high conversion gain Q-band active sub-harmonic mixers for a receiver of millimeter wave wireless communication systems. The fabricated active sub-harmonic mixer uses 2nd harmonic signals of a low local oscillator (LO) frequency. The fabricated mixer was successfully integrated by using $0.1{\;}\mu\textrm{m}$GaAs pseudomorphic high electron mobility transistors (PHEMTs) and coplanar waveguide (CPW) structures. From the measurement, it shows that maximum conversion gain of 4.8 dB has obtained at a RF frequency of 40 GHz for 10 dBm LO power of 17.5 GHz. Conversion gain from the fabricated sub-harmonic mixer is one of the best reported thus far. And a phase noise of the 2nd harmonic was obtained -90.23 dBc/Hz at 100 kHz offset. The active sub-harmonic mixer also ensure a high degree of isolations, which are -35.8 dB from LO-to-IF and -40.5 dB from LO-to-RF, respectively, at a LO frequency of 17.5 GHz.

Permittivity Measurements of various Materials in 13-28GHz Band (13-28GHz 대역에서 다양한 매질의 유전율 측정)

  • Park, No-Uk;Jeong, Won-Ho;Jung, Myung-Won;Chong, Young-Jun;Kim, Jong-Ho;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.161-167
    • /
    • 2014
  • This paper presents the results of permittivities of various materials by measurements of the dielectric properties for the materials in millimeter-wave band. Since the advantages of millimeter wave band include the miniaturization, weight reduction of component and a lot of information transfer, its study has received increasing attention of researches. Also, because of the characteristics of the band have the superior straightness and the small diffractive, in the band, the analysis for the reflection and transmission characteristics of the materials will be very important. Moreover, a low interference is one of characteristics of the band due to the fact that the millimeter wave is absorbed in the materials. Therefore, in this paper, the reflection and transmission characteristics of materials are measured in the band by using the free space method. Based on the presented result, the permittivities of the materials are derived by the calculation of Nicolson-Ross Weir method.

A Conditional Clustering Scheme for Hybrid NOMA in Millimeter Wave Communication System

  • Nguyen, Thanh Ngoc;Jeon, Taehyun
    • International journal of advanced smart convergence
    • /
    • v.8 no.4
    • /
    • pp.34-39
    • /
    • 2019
  • Millimeter-wave (mmWave) and Non-orthogonal multiple access (NOMA) are expected to be the major techniques that lead to the next generation wireless communication. NOMA provides a high spectrum efficiency by sharing of spatial resources among users in the same frequency band. Meanwhile, millimeter-wave gives a huge underutilized bandwidth at extremely high frequency band (EHF) which covers 30GHz to 300GHz. These techniques have been proven in several recent literatures to achieve high data rates. The combination of NOMA and millimeter-wave techniques further improves average sum capacities, as well as reduces the interference compared to conventional wireless communication systems. In this paper, we focus on hybrid NOMA system working in millimeter-wave frequency. We propose a clustering algorithm used for a hybrid NOMA scheme to optimize the usage of wireless resources. The proposed clustering algorithm adds several conditions in grouping users and defining clusters to increase the probability of the successful superposition decoding process. The performance of the proposed clustering algorithm is investigated in hybrid NOMA system and compared with the conventional orthogonal multiple access (OMA) scheme.

Design and fabrication of V-band cascode down-mixer using CPW structure (CPW 구조를 이용한 V-band cascode 하향 주파수 혼합기의 설계 및 제작)

  • An, D.;Chae, Y. S.;Kang, T. S.;Sul, W. S.;Lim, B. O.;Rhee, J. K.
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2001.11a
    • /
    • pp.213-217
    • /
    • 2001
  • 본 논문에서는 CPW 구조를 이용하여 60 GHz 무선 시스템 응용을 위한 V-band용 하향 주파수 혼합기를 설계 및 제작하였다. 하향 주파수 혼합기의 설계 및 제작에 있어서 GaAs PHEMT(Pseudomorphic high electron mobility transistor)를 기반으로 하였으며, 회로설계를 위해 coplanar waveguide(CPW) 라이브러리를 구축하여 이용하였다. 제작된 하향 주파수 혼합기의 변환이득은 국부발진주파수(LO) 입력이 8 dBm일 때 -8.5 dB의 최대 변환이득 특성을 얻었으며 Pl dB는 -3.3 dBm을 얻었다. 제작된 회로의 칩 크기는 1.6$\times$l.6 $\textrm{mm}^2$ 이다.

  • PDF

Development of a V-Band Millimeter-Wave Source Module

  • Kwon, Jae-Yong;Lee, Dong-Joon;Bakti, Aditia Nur;Angin, Windi Kurnia Perangin
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.4
    • /
    • pp.225-228
    • /
    • 2016
  • KRISS-V, a V-band millimeter-wave source module for a primary RF power standard and calibration system developed by the Korea Research Institute of Standards and Science is here presented. The output power of KRISS-V is several times higher than that of commercial amplifier/multiplier chains and is highly stable (the standard deviations of output power are less than 0.01% in the worst case). The spectral purity of KRISS-V is high enough to consider it a single-tone signal generator. We also added programmable attenuation capability to KRISS-V for remote power control. Moreover, the in-house source module is cost-effective and adaptable to various measurement schemes. The structure of the model as well as detailed component information are introduced so that it can be reproduced.

The Measurement and Analysis of Path Loss in Millimeter-Wave Band for Different Progation Environments (전파환경에 따른 밀리미터파 대역 경로손실 측정 및 분석)

  • 정남호;백정기;김준철;황정환;한동필
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.3
    • /
    • pp.410-418
    • /
    • 2000
  • In this paper, path losses in millimeter-wave band for different propagation environments are measured, and the results are analyzed by modeling the median, maximum, and minimum values of the measurement data for each site, which are recorded for 5 minutes, with a linear regression model. The measurement data shows that in urban and suburban environments, extra path loss must be taken into account for line-of-sight path, even in millimeter wave band.

  • PDF

A Novel Design of High Power Amplifier Employing Photonic Band Gap in Millimeter Wave Band

  • Seo Chul-Hun
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.2
    • /
    • pp.98-102
    • /
    • 2006
  • In this paper, we have designed and fabricated the high power amplifier employing PBG(Photonic Band-Gap Structure) to improve the linearity of the amplifier in the millimeter wave band. The fabricated amplifier using MMIC(TGA1073G) has operated about 24 GHz band and the PBG has resulted in 35 dB suppression about 49 GHz where the second harmonic occurs due to the amplifier. As a result, the output power has been 24.43 dBm and 13.2 dBc of the IMD has been improved. Also, the PAE is obtained to 14.96 % of the amplifier employing the PBG structure in Ka band.

Study on Imaging with Scanning Airborne W-band Millimeter Wave Radiometer

  • Kong, De-Cai;Kim, Yong-Hoon;Li, Jing;Zhang, Sheng-Wei;Sun, Mao-Hua;Liu, He-Guang;Jiang, Jing-Shan
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.593-597
    • /
    • 2002
  • The paper introduces a research on the W-band Millimeter Wave Radiometer(RADW92) through an airborne experiment. Microwave remote sensing images of part of the Yellow River and the WeiHe River are of fared. Analysis of factors influencing the image qualities as well as the resolutions to them are also included. The RADW92 is the first generation of Millimeter Wave Radiometer in China, which works with operating frequency 92 GHz, the bandwidth 2 GHz, the integration time 60ms, the system sensitivity 0.6k and the linearity better than 0.999. Cassegrain Antenna is designed for imaging by conically scanning. The result of the experiment suggested that RADW92 had been adequate for space use.

  • PDF

Precise Measurements of Waveguide Scattering Parameters in G-Band (G-Band 도파관 산란 계수 정밀 측정)

  • Kang, Jin-Seob;Kim, Jeong-Hwan;Cho, Chihyun;Kim, Dae-Chan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.9
    • /
    • pp.892-899
    • /
    • 2013
  • This paper discusses difficulties in precise measurements of the scattering parameters in (sub-)millimeter-wave range and tips for more accurate measurements, and provides measurement examples in the G-band(140~220 GHz). First, one investigates the differences in operating principles of scattering parameters measurement systems used in microwave and (sub-)millimeter-wave ranges and describes tips for better operation of the (sub-)millimeter-wave scattering parameters measurement system. In addition, one describes tips for better transmission properties and connection repeatability of waveguides and a precise measurement method for devices with small reflection coefficients.

A W-Band Millimeter-Wave Power Standard Transfer System Using the Direct Comparison Method (직접 비교법을 이용한 W-Band 밀리미터파 전력 표준 전달 시스템)

  • Kwon, Jae-Yong;Kang, Tae-Weon;Kang, Jin-Seob;Lee, Dong-Joon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.1
    • /
    • pp.47-54
    • /
    • 2013
  • This paper introduces a W-band millimeter-wave power standard transfer system using the direct comparison method. The transfer system was developed to evaluate the effective efficiency and calibration factor of a W-band waveguide power sensor. The evaluation method and the measured results of the directional coupler that characterizes the calibration system are studied. The uncertainties of the standard transfer system are investigated, and the major uncertainty contributors are discussed as well. The performance of the realized W-band power standard transfer system was verified by comparing results with reference values.