• Title/Summary/Keyword: millimeter wave communication

Search Result 184, Processing Time 0.022 seconds

A Study on Design and Fabrication of mm-Wave EM Absorber (밀리미터파 대역 전파흡수체의 설계 및 제작에 관한 연구)

  • Kim, Dae-Hun;Choi, Chang-Mook;Choi, Dong-Su;Kim, Dong-Il
    • Journal of Navigation and Port Research
    • /
    • v.34 no.3
    • /
    • pp.161-166
    • /
    • 2010
  • The bandwidth of detecting radars used for military purpose is increasingly broadened, and recently, the frequency band of the detecting radars is expanding to millimeterwave bands of the millimeterwave bands of 35 GHz and 94 GHz. Since, especially, it is essential and important to fabricate and develop EM wave absorber with the absorption ability more than 10 dB in 94 GHz band, the EM wave absorber was manufactured based on the design method by FDTD simulation. As a result, the developed EM wave absorber with the composition ratio of Binder(CPE with additional materials) : Carbon = 70 : 30 wt.% has the thickness of 0.7 mm and the absorption ability more than 14 dB in the frequency range of 94 GHz.

Spatial Reuse Algorithm Using Interference Graph in Millimeter Wave Beamforming Systems

  • Jo, Ohyun;Yoon, Jungmin
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.255-263
    • /
    • 2017
  • This paper proposes a graph-theatrical approach to optimize spatial reuse by adopting a technique that quantizes the channel information into single bit sub-messages. First, we introduce an interference graph to model the network topology. Based on the interference graph, the computational requirements of the algorithm that computes the optimal spatial reuse factor of each user are reduced to quasilinear time complexity, ideal for practical implementation. We perform a resource allocation procedure that can maximize the efficiency of spatial reuse. The proposed spatial reuse scheme provides advantages in beamforming systems, where in the interference with neighbor nodes can be mitigated by using directional beams. Based on results of system level measurements performed to illustrate the physical interference from practical millimeter wave wireless links, we conclude that the potential of the proposed algorithm is both feasible and promising.

Efficient Beam-Training Technique for Millimeter-Wave Cellular Communications

  • Ku, Bon Woo;Han, Dae Gen;Cho, Yong Soo
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.81-89
    • /
    • 2016
  • In this paper, a beam ID preamble (BIDP) technique, where a beam ID is transmitted in the physical layer, is proposed for efficient beam training in millimeter-wave cellular communication systems. To facilitate beam ID detection in a multicell environment with multiple beams, a BIDP is designed such that a beam ID is mapped onto a Zadoff-Chu sequence in association with its cell ID. By analyzing the correlation property of the BIDP, it is shown that multiple beams can be transmitted simultaneously with the proposed technique with minimal interbeam interference in a multicell environment, where beams have different time delays due to propagation delay or multipath channel delay. Through simulation with a spatial channel model, it is shown that the best beam pairs can be found with a significantly reduced processing time of beam training in the proposed technique.

Resource Allocation Scheme for Millimeter Wave-Based WPANs Using Directional Antennas

  • Kim, Meejoung;Kim, Yongsun;Lee, Wooyong
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.385-395
    • /
    • 2014
  • In this paper, we consider a resource allocation scheme for millimeter wave-based wireless personal area networks using directional antennas. This scheme involves scheduling the reservation period of medium access control for IEEE 802.15.3c. Objective functions are considered to minimize the average delay and maximize throughput; and two scheduling algorithms-namely, MInMax concurrent transmission and MAxMin concurrent transmission-are proposed to provide a suboptimal solution to each objective function. These are based on an exclusive region and two decision rules that determine the length of reservation times and the transmission order of groups. Each group consists of flows that are concurrently transmittable via spatial reuse. The algorithms appropriately apply two decision rules according to their objectives. A real video trace is used for the numerical results, which show that the proposed algorithms satisfy their objectives. They outperform other schemes on a range of measures, showing the effect of using a directional antenna. The proposed scheme efficiently supports variable bit rate traffic during the reservation period, reducing resource waste.

Stereo 3 mm Millimeter Wave Imaging for Distance Estimation to Concealed Objects (스테레오 3mm 밀리미터파 영상을 이용한 은닉물체의 거리추정에 관한 연구)

  • Yeom, Seokwon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.18 no.1
    • /
    • pp.21-24
    • /
    • 2017
  • Passive millimeter wave (MMW) imaging penetrates clothing to detect concealed objects. The distances extraction to the concealed objects is critical for the security and defense. In this paper, we address a passive stereo 3 mm MMW imaging system to extract the longitudinal distance to the concealed object. The concealed object area is segmented and extracted by the k-means clustering algorithm with splitting initialization. The distance to the concealed object is estimated by the corresponding centers of the segmented objects. In the experimental two pairs (each pair for horizontal and vertical polarization) of stereo MMW images are obtained to estimate distances to concealed objects.

  • PDF

Coordinated Millimeter Wave Beam Selection Using Fingerprint for Cellular-Connected Unmanned Aerial Vehicle

  • Moon, Sangmi;Kim, Hyeonsung;You, Young-Hwan;Kim, Cheol Hong;Hwang, Intae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1929-1943
    • /
    • 2021
  • Millimeter wave (mmWave) communication based on the wide bandwidth of >28 GHz is one of the key technologies for cellular-connected unmanned aerial vehicles (UAVs). The selection of mmWave beams in such cellular-connected UAVs is challenging and critical, especially when downlink transmissions toward aerial user equipment (UE) suffer from poor signal-to-interference-plus-noise ratio (SINR) more often than their terrestrial counterparts. This study proposed a coordinated mmWave beam selection scheme using fingerprint for cellular-connected UAV. The scheme comprises fingerprint database configuration and coordinated beam selection. In the fingerprint database configuration, the best beam index from the serving cell and interference beam indexes from neighboring cells are stored. In the coordinated beam selection, the best and interference beams are determined using the fingerprint database information instead of performing an exhaustive search, and the coordinated beam transmission improves the SINR for aerial UEs. System-level simulations assess the UAV effect based on the third-generation partnership project-new radio mmWave and UAV channel models. Simulation results show that the proposed scheme can reduce the overhead of exhaustive search and improve the SINR and spectral efficiency.

Millimeter-wave directional-antenna beamwidth effects on the ITU-R building entry loss (BEL) propagation model

  • Lee, Juyul;Kim, Kyung-Won;Kim, Myung-Don;Park, Jae-Joon;Yoon, Young Keun;Chong, Young Jun
    • ETRI Journal
    • /
    • v.42 no.1
    • /
    • pp.7-16
    • /
    • 2020
  • Assuming omnidirectional antenna reception, the ITU-R recently developed a new propagation model on building entry loss (BEL) for 5G millimeter-wave frequency sharing and compatibility studies, which is a simplified outdoor-to-indoor path loss model. Considering the utilization of high-gain narrow-beamwidth beamforming, the omnidirectional-based ITU-R BEL model may not be appropriate to predict propagation characteristics for directional beamforming scenarios. This paper studies the effects of beamwidth on the ITU-R BEL model. This study is based on field measurements collected with four different beamwidth antennas: omnidirectional, 10° horn, 30° horn, and 60° horn. The measurement campaigns were conducted at two types of building sites: traditional and thermally efficient buildings. These sites, as well as the measurement scenarios, were carefully chosen to comply with the ITU-R BEL measurement guidelines and the ITU-R building types. We observed the importance of accurate beam alignment from the BEL variation range. We were able to quantify the beamwidth dependency by fitting to a model that is inversely proportional to the beamwidth.

A Tx-Rx Beam Tracking Technique for Cellular Communication Systems with a mmWave Link (밀리미터 웨이브 링크를 갖는 셀룰러 통신 시스템을 위한 송·수신 빔 추적 기법)

  • Kim, Kyu Seok;Lim, Tae Sung;Choi, Joo Hyung;Cho, Yong Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.12
    • /
    • pp.1327-1337
    • /
    • 2014
  • In cellular communication systems employing millimeter wave (mmWave) bands for a link, a large amount of training time and network resources will be required to find a serving BS with the best transmit and receive (Tx-Rx) beam pair if downlink control signals are used. In this paper, a tracking technique for OFDM-based cellular communication systems with a mmWave link, where an analog beamforer is used at the mobile station (MS) and a digital beamformer is used at the BS, is proposed using an uplink signal. A technique to select a serving BS with the best beam pair is described using the uplink preamble sequence based on Zadoff-Chu sequence and a metrics which can be used to identify parameters such as beam ID (BID), MS ID (MID), and direction-of-arrival (DoA). The effectiveness of the proposed technique is verified via simulation with the spatial channel model (SCM) for a moving MS in mmWave cellular systems.

A Study on Design and Fabrication of mmwave EM Absorber (밀리미터파 대역 전파흡수체의 설계 및 제작에 관한 연구)

  • Kim, Dae-Hun;Choi, Chang-Mook;Choi, Dong-Soo;Han, Hang-Man
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.10a
    • /
    • pp.54-55
    • /
    • 2009
  • The bandwidth of detecting radars used for military purpose is increasingly broadened, and recently, the frequency band of the detecting radars is expanding to millimeterwave bands c! the millimeterwave bands of 35 GHz and 94 GHz. Since, especially, it is essential and important to fabricate and develop EM wave absorber with the absorption ability more than 10 dB in 94 GHz band, the EM wave absorber was manufactured based on the design method by FDTD simulation As a result, the developed EM wave absorber with the composition ratio of Binder(CPE with additional materials) : Carbon = 70 : 30 wt.% has the thickness of 0.7 mm and the absorption ability more than 14 dB in the frequency range of 94 GHz.

  • PDF

Advanced Transverse Wave Approach for MM-Wave Analysis of Planar Antennas applied in 5G-Technology

  • Ayari, Mohamed;Touati, Yamen El;Altowaijri, Saleh
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.295-299
    • /
    • 2022
  • In this paper, a fast numerical electromagnetic (EM) method based on the transverse wave formulation called-up Advanced Transverse Wave Approach (A-TWA) is presented. An appropriate 5G antenna is designed, simulated and investigated in the context of Millimeter-Wave Wireless Communication Systems. The obtained simulation results are found in good agreement with literature. Such a method can provide for the simulators a great library integrating the most complexly and sensitively geometry elements that can have a huge impact on the applications supported by new wireless technologies.