• Title/Summary/Keyword: milled rice quality

Search Result 254, Processing Time 0.023 seconds

A New Early Maturity, High Grain Quality and Cold tolerance Rice Cultivar, "Hwangkeumbora" (벼 조생 고품질 내냉성 "황금보라")

  • Nam, Jeong Kwon;Kim, Ki Young;Ko, Jong Cheol;Ha, Ki Yong;Choung, Jin Il;Shin, Mun Sik;Kim, Bo Kyeong;Baek, Man Kee;Kang, Hyeon Jung;Kim, Yeong Doo;Noh, Gwang Il;Baek, So Hyeon;Shin, Woon Chul;Shin, Seo Ho;Ko, Jae Kwon;Kim, Chung Kon
    • Korean Journal of Breeding Science
    • /
    • v.40 no.3
    • /
    • pp.332-335
    • /
    • 2008
  • "Hwangkeumbora" is a new japonica rice cultivar developed from a three way cross of Jinbubyeo, Odaebyeo, Fukei126 at Honam Agricultural Reaserch Institute (HARI), NICS, RDA, in 2006. This cultivar has about 110 days growth duration from transplanting to harvesting under Korean climate condition. The milled kernel of "Hwangkeumbora" is translucent with non- glutinous endosperm. Amylose content of "Hwangkeumbora" is about 19.3%. "Hwangkeumbora" has better palatability of cooked rice compared with "Odaebyeo" and shows high resistant reaction to the blast, but susceptible to major diseases and insect pests. The milled rice yield of "Hwangkeumbora" is about 5.37 MT/ha under the standard fertilizer level of the ordinary transplanting cultivation. "Hwangkeumbora" would be adaptable for ordinary transplanting in northern plain, mid-mountainous, southern mountainous of Korea.

A Early Maturity, High Grain Quality and Cold Tolerance Rice Cultivar "Sinunbong 1" (벼 조생 고품질 내냉성 품종 "신운봉1호")

  • Kim, Ki Young;Nam, Jeong Kwon;Choung, Jin Il;Ko, Jae Kwon;Kim, Bo Kyeong;Shin, Mun Sik;Ha, Ki Yong;Ko, Jong Cheol;Baek, Man Kee;Kim, Young Doo;Noh, Gwang Il;Kim, Woo Jae;Park, Hyun Su;Kang, Hyun Jung;Kim, Chung Kon
    • Korean Journal of Breeding Science
    • /
    • v.40 no.2
    • /
    • pp.192-195
    • /
    • 2008
  • 'Sinunbong 1' is a japonica rice cultivar developed from the cross between "Sangjubyeo", high yield cultivar and 'Unbong 17', cold tolerance at Honam Agricultural Research Institute (HARI), NICS, RDA, in 2005. This cultivar has a short grain shape and about 111 days growth duration from transplanting to harvesting in Korean climate condition. This cultivar shows high resistant reaction to the blast, but susceptible to bacterial blight and strip virus. This variety has cold tolerance, compared to Odaebyeo. The milled kernels of 'Sinunbong 1' are translucent with non-glutinous endosperm. It has about 19.2% of amylose content and better palatability of cooked rice compared with 'Odaebyeo'. The milled rice yield of 'Sinunbong 1' is about 5.46 MT/ha under the standard fertilizer level of the ordinary transplanting cultivation. 'Sinunbong 1' would be adaptable to the northern plain, mid-mountainous, southern mountainous of Korea.

A New High Qualilty Rice Variety with High Head Rice Ratio and Milling Recovery, "Chilbo" (완전미율, 도정수율 높은 중만생 고품질 벼 신품종 "칠보(七寶)")

  • Kim, Jeong-Il;Chang, Jae-Ki;Park, No-Bong;Yeo, Un-Sang;Oh, Byeong-Geun;Kang, Jung-Hun;Kwon, Oh-Deog;Shin, Mun-Sik;Park, Dong-Soo;Kwak, Do-Yeon;Lee, Jong-Hee;Song, You-Cheon;Kim, Chun-Song;Cho, Jun-Hyun;Yi, Gihwan;Lee, Ji-Yoon;Nam, Min-Hee;Kim, Sang-Yeol;Ahn, Jong-Woong;Ku, Yeon-chung;Kim, Jae-Kyu
    • Korean Journal of Breeding Science
    • /
    • v.41 no.4
    • /
    • pp.547-551
    • /
    • 2009
  • A new commercial rice variety "Chilbo" is a japonica rice (Oryza sativa L.) with resistance to rice stripe virus and high grain quality. It was developed by the rice breeding team of Yeongdeog Substation, NICS, RDA in 2007. This variety was derived from a cross between "Yeongdeog 26" with wind tolerance and lodging resistance and "Koshihikari" with good grain quality. A promising line, YR21324-119-3-2 was selected by a pedigree breeding method and designated as "Yeongdeog 44" in 2004. Regional adaptation yield trials were carried out at eleven locations from 2005 to 2007. As a result, "Yeongdeog 44" was released as a high yielding rice variety with high grain qualilty and virus resistance with the name of "Chilbo". It is short 76cm in culm length and has medium-late growth duration. This variety is resistant to stripe virus and middle resistant to leaf blast disease. It is also tolerant to cold, dried wind. Milled rice kernel of "Chilbo" is translucent, clear in chalkiness. Panel test proved that and it has good eating quality. Head rice ratio of Chilbo is high compared to the check variety, Hwaseongbyeo. Yield potential of "Chilbo" in milled rice is about 5.57MT/ha at ordinary fertilizer level of local adaptability test. This variety would be adaptable to Yeongnam plain, south & east-south coastal, south mid-mountainous, middle plain area of Korean peninsula.

Effect of Thresher Drum-Speed on the Quality of the Milled Rice (탈곡기의 급동 속도가 도정 손실에 미치는 영향)

  • 정창주;고학균;이종호;강화석
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.10-24
    • /
    • 1979
  • It is understood that drum speed of threshers and the moisture content of paddy grains to be threshed, respectively, have a signific:mt effect upon rice recoveries. Threshing under an increased drum speed would give a high performance rate, which is the general practice in custom work threshing in association with the use of semiauto-t hreshers. In the connection, however, it may result in the promotion of grain cracks and brokens of the rice product after milling. No reference or determination for an opti mum drum speed of the thresher is made available for various grain moisture contents at the time of the threshing operation and for different rice varieties especially for the Tongil rice varieties. This study was Conducted to find out and determine effects of the drum speeds on grain losses. The grain loss was quantified in terms of recovery rates of rice grains after treatments. Samples of each of all treatments were taken from the grain sampling plate placed in the grain conveyor of threshers. The grain sample plate was specially provided for this experiment. The brown-rice, milling, and head-rice recJveries were tes ted in the laboratory mill, respectively. Two rice varieties, Akibare and Suweon 251, each with five levels of different moist\ulcornerure contents at harvest and six levels of different drum speeds of threshers, were selected and used for treatments in this experiment. Two conditions of materials were tested in the thresher. One condition was to thresh the experimental material immediately after cutting, referred to as the wet-material thr eshing in this study. The other was to thresh the experimental :material, dried to contain about 15-16 percent of the grain moisture under the shocking operation. This is referred to as the dry-material threshing in this study. In additioon, field measurements for the grain moistures and drum-sdeeds under actual operation practices of the traditional field threshing, were conducted with a view to comparing with results of the experimental treatments. The results of the study may be summarized as follows: 1. For threshing treatments of Japonica-type rice variety (Akibare) , the effect of drum speeds and levels of grain moisture at cutting upon brown-rice, milling, and head-rice recoveries were found statistically significant. No significant difference in these recovery rates was noticed regardless of whether the material was threshed right after cutting or after drying by the shocking operation. 2. For the Tongil-sister rice variety(Suweon 251), milling recovery for the varied drum-speed and the grain~moisture level at cutting was found statististically significant. Th milling recovery was much significant when associated with the wet-material thres\ulcornerhing compared to the dry-material threshing. 3. The optimum peripheral velocity to be maintained at the edge of teeth on the thr\ulcorneresher drum was determined and may be recommanded as that of about 12 to 13 meters per second in view of the maximum recovery rate of the milled rice. 4. The effect of the drum speed on the qualitative loss of the milled rice was much greater in the case of the Tongil variety than Japonica. This effect was also greater by the wet-material threshing than by the dry-material threshing. Therefore, to apply the wet-material threshing operation for the Tongil variety, in particular, it should be very important to introduce the kind of threshing technology which would maintain the drum speed at optimum. 5. A field survey for the actual drum speed of threshing operations for 50 threshers indicated that average peripheral velccity was 12.76m/sec., and that the range was from 10.50 to 14.90m/sec. Approximately, more than 30% of the experimented and measured threshers were being operated at speeds which exceeded the optimum speed determined and assessed in this study. Accordingly, it should be highly desirable and important to take counter-measures against these threshing practices of operational overspeed.

  • PDF

Effect of Thresher Drum-Speed on the Quality of the Milled Rice (탈곡기의 급동 속도가 도정 손실에 미치는 영향)

  • Chung, Chang Joo;Koh, Hak Kyun;Lee, Chong Ho;Kang, Hwa Seug
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.9-9
    • /
    • 1979
  • It is understood that drum speed of threshers and the moisture content of paddy grains to be threshed, respectively, have a signific:mt effect upon rice recoveries. Threshing under an increased drum speed would give a high performance rate, which is the general practice in custom work threshing in association with the use of semiauto-t hreshers. In the connection, however, it may result in the promotion of grain cracks and brokens of the rice product after milling. No reference or determination for an opti mum drum speed of the thresher is made available for various grain moisture contents at the time of the threshing operation and for different rice varieties especially for the Tongil rice varieties. This study was Conducted to find out and determine effects of the drum speeds on grain losses. The grain loss was quantified in terms of recovery rates of rice grains after treatments. Samples of each of all treatments were taken from the grain sampling plate placed in the grain conveyor of threshers. The grain sample plate was specially provided for this experiment. The brown-rice, milling, and head-rice recJveries were tes ted in the laboratory mill, respectively. Two rice varieties, Akibare and Suweon 251, each with five levels of different moist?ure contents at harvest and six levels of different drum speeds of threshers, were selected and used for treatments in this experiment. Two conditions of materials were tested in the thresher. One condition was to thresh the experimental material immediately after cutting, referred to as the wet-material thr eshing in this study. The other was to thresh the experimental :material, dried to contain about 15-16 percent of the grain moisture under the shocking operation. This is referred to as the dry-material threshing in this study. In additioon, field measurements for the grain moistures and drum-sdeeds under actual operation practices of the traditional field threshing, were conducted with a view to comparing with results of the experimental treatments. The results of the study may be summarized as follows: 1. For threshing treatments of Japonica-type rice variety (Akibare) , the effect of drum speeds and levels of grain moisture at cutting upon brown-rice, milling, and head-rice recoveries were found statistically significant. No significant difference in these recovery rates was noticed regardless of whether the material was threshed right after cutting or after drying by the shocking operation. 2. For the Tongil-sister rice variety(Suweon 251), milling recovery for the varied drum-speed and the grain~moisture level at cutting was found statististically significant. Th milling recovery was much significant when associated with the wet-material thres?hing compared to the dry-material threshing. 3. The optimum peripheral velocity to be maintained at the edge of teeth on the thr?esher drum was determined and may be recommanded as that of about 12 to 13 meters per second in view of the maximum recovery rate of the milled rice. 4. The effect of the drum speed on the qualitative loss of the milled rice was much greater in the case of the Tongil variety than Japonica. This effect was also greater by the wet-material threshing than by the dry-material threshing. Therefore, to apply the wet-material threshing operation for the Tongil variety, in particular, it should be very important to introduce the kind of threshing technology which would maintain the drum speed at optimum. 5. A field survey for the actual drum speed of threshing operations for 50 threshers indicated that average peripheral velccity was 12.76m/sec., and that the range was from 10.50 to 14.90m/sec. Approximately, more than 30% of the experimented and measured threshers were being operated at speeds which exceeded the optimum speed determined and assessed in this study. Accordingly, it should be highly desirable and important to take counter-measures against these threshing practices of operational overspeed.

Differences in Rice Quality and Physiochemical Component between Protox Inhibitor-Herbicide Resistant Transgenic Rice and Its Non-transgenic Counterpart (Protox 저해형 제초제 저항성 형질환벼와 비형질전환벼의 미질 및 이화학적 성분 차이)

  • Jung, Ha-Il;Yun, Young-Beom;Kwon, Oh-Do;Lee, Do-Jin;Back, Kyoung-Whan;Kuk, Yong-In
    • Korean Journal of Weed Science
    • /
    • v.32 no.1
    • /
    • pp.25-34
    • /
    • 2012
  • Characteristics related to grain quality and physiochemical components such as mineral, total amino acid, free amino acid, and free sugar composition were investigated in Protox inhibitor resistanttransgenic rice (MX, PX, and AP37) and its nontransgenic counterpart (WT). Head rice, palatability, protein, and whiteness (except for MX and AP37) of milled transgenic rice were high or similar to those of the non-transgenic counterpart. Immature rice, unfilled grain, and cracked kernels (PX and AP37) of milled transgenic rice were lower than those of its non-transgenic counterpart. However, there were no significant differences in damaged grain between the transgenic rice lines and its counterpart. Potassium content in PX and copper contents in PX and AP37 were only low compared with their non-transgenic counterparts, but other mineral contents in transgenic rice lines were high or showed no significant differences compared with non-transgenic counterparts. Contents of most total amino acid composition in transgenic rice lines were high or similar to those in non-transgenic counterparts, but the content of isoleucine in AP37 was only low compared with its non-transgenic counterpart. On the other hand, free amino acid, leucine and tyrosine in PX and AP37, and total free amino acid in PX were low compared with their non-transgenic counterparts. However, the content of free amino acid in other kinds in transgenic rice lines were similar to those in their non-transgenic counterparts. Contents of sucrose in MX and PX were low compared with non-transgenic counterpars, but contents of fructose, glucose, and maltose in transgenic rice lines were high or similar compared with their non-transgenic counterparts. This results indicated that Protox genes had no negative affect on the nutritional composition of rice.

Effects of Rice Flours Prepared with Different Milling Methods on Quality of Sulgidduk (제조 방법을 달리한 쌀가루가 설기떡의 품질에 미치는 영향)

  • Park, Jae-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.11
    • /
    • pp.1742-1748
    • /
    • 2014
  • This study investigated the quality characteristics of commercial rice flour (CRF) and rice flours prepared by different milling methods for sulgidduk. For particle distribution, dried rice flour after the 1st roll mill using a pin mill showed a particle size of greater than $710{\mu}m$, whereas a particle size less than $250{\mu}m$ accounted for 48% of whole rice flour. This proportion was higher than CRF after the 2nd step roll mill. Crude protein, lipid, and ash contents were significantly highest in 1st roll mill samples. For color, roll & pin made up of many small particles showed a high L value. CRF and roll & pin showed significantly higher starch damage and water-holding capacity, whereas pasting temperature, peak viscosity, and setback of RVA pasting characteristics were lower than 1st roll mill. When rice cakes were made from three kinds of rice flour, roll & pin was not significantly different compared to the CRF. However, rice cakes made with 1st roll milled rice flour showed rough crumb and crust. Rice cake made with roll & pin or CRF showed similar characteristics for texture. In the quantitative descriptive analysis, rice cake made with roll & pin showed better appearance, flavor, taste, texture, and overall acceptability than CRF and 1st roll mill. Therefore, rice flour prepared by roll & pin could be applied to sulgidduk with high quality.

A High-Eating Quality Rice Variety 'Cheonghaejinmi' Adaptable to Low Nitrogen Fertilizer Application (질소 소비료 적성 고양식미 벼 신품종 '청해진미')

  • Oh, Myung-Kyu;Kim, Yeon-Gyu;Kim, Myeong-Ki;Cho, Young-Chan;Hwang, Hung-Goo;Hong, Ha-Cheol;Choi, Im-Soo;Kim, Jeong-Ju;Lee, Jeom-Ho;Baek, Man-Kee;Choi, Yong-Hwan;Jeong, Jong-Min;Yang, Chang-In;Oh, Sea-Kwan;Choi, In-Bea;Won, Yong-Jae;Chun, A-Reum
    • Korean Journal of Breeding Science
    • /
    • v.42 no.3
    • /
    • pp.307-312
    • /
    • 2010
  • 'Cheonghaejinmi' is a new japonica rice variety developed from three-way cross between Samjiyeon/SR14694-57-4-2-1-3-2-2//Iri402 by the rice breeding team of National Institute of Crop Science, RDA. Heading date of this variety is August 18, 4 days later than that of 'Sobibyeo' in middle plain areas. It has culm length of 78 cm, 125 spikelets per panicle, 92.5% of ripened grain rate, and 23.9 g of 1000-brown rice weight. It showed 12 days of heading delay, and 63% spikelet fertility in cold-water irrigation stress. 'Cheonghaejinmi' is susceptible to blast disease, bacterial blight, virus diseases and plant hoppers. The nitrogen use efficiency of this variety is higher than that of Sobibyeo in low nitrogen application level. Milled rice of 'Cheonghaejinmi' exhibits translucent, clear non-glutinous endosperm and medium short grain. It has 5.9% protein content, 20.3% amylose content, and 0.28 palatability index of cooked rice compared to -0.11 of Hwaseongbyeo. The milled rice yield of 'Cheonghaejinmi' was about 5.31 MT/ha at low nitrogen application level of ordinary season culture. This variety had 98.8% whole grain in milled rice and 76% milling recovery of whole grain. 'Cheonghaejinmi' would be adaptable to middle plain areas and middle-western coastal areas in Korea.

Determining Nitrogen Topdressing Rate at Panicle Initiation Stage of Rice based on Vegetation Index and SPAD Reading (유수분화기 식생지수와 SPAD값에 의한 벼 질소 수비 시용량 결정)

  • Kim Min-Ho;Fu Jin-Dong;Lee Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.5
    • /
    • pp.386-395
    • /
    • 2006
  • The core questions for determining nitrogen topdress rate (Npi) at panicle initiation stage (PIS) are 'how much nitrogen accumulation during the reproductive stage (PNup) is required for the target rice yield or protein content depending on the growth and nitrogen nutrition status at PIS?' and 'how can we diagnose the growth and nitrogen nutrition status easily at real time basis?'. To address these questions, two years experiments from 2001 to 2002 were done under various rates of basal, tillering, and panicle nitrogen fertilizer by employing a rice cultivar, Hwaseongbyeo. The response of grain yield and milled-rice protein content was quantified in relation to RVIgreen (green ratio vegetation index) and SPAD reading measured around PIS as indirect estimators for growth and nitrogen nutrition status, the regression models were formulated to predict PNup based on the growth and nitrogen nutrition status and Npi at PIS. Grain yield showed quadratic response to PNup, RVIgreen around PIS, and SPAD reading around PIS. The regression models to predict grain yield had a high determination coefficient of above 0.95. PNup for the maximum grain yield was estimated to be 9 to 13.5 kgN/10a within the range of RVIgreen around PIS of this experiment. decreasing with increasing RVIgreen and also to be 10 to 11 kgN/10a regardless of SPAD readings around PIS. At these PNup's the protein content of milled rice was estimated to rise above 9% that might degrade eating quality seriously Milled-rice protein content showed curve-linear increase with the increase of PNup, RVIgreen around PIS, and SPAD reading around PIS. The regression models to predict protein content had a high determination coefficient of above 0.91. PNup to control the milled-rice protein content below 7% was estimated as 6 to 8 kgN/10a within the range of RVIgreen and SPAD reading of this experiment, showing much lower values than those for the maximum grain yield. The recovery of the Npi applied at PIS ranged from 53 to 83%, increasing with the increased growth amount while decreasing with the increasing Npi. The natural nitrogen supply from PIS to harvest ranged from 2.5 to 4 kg/10a, showing quadratic relationship with the shoot dry weight or shoot nitrogen content at PIS. The regression models to estimate PNup was formulated using Npi and anyone of RVIgreen, shoot dry weight, and shoot nitrogen content at PIS as predictor variables. These models showed good fitness with determination coefficients of 0.86 to 0.95 The prescription method based on the above models predicting grain yield, protein content and PNup and its constraints were discussed.

A Mid-late Maturing Rice Cultivar with High-Quality and Bacterial Blight Resistance "Jinbaek" (벼 중만생 고품질 흰잎마름병 신균계(K3a) 저항성 품종 "진백")

  • Kim, Ki-Young;Shin, Mun-Sik;Kim, Bo-Kyeong;Ko, Jae-Kwon;Noh, Tae-Hwan;Ha, Ki-Yong;Ko, Jong-Cheol;Kim, Woo-Jae;Nam, Jeong-Kwon;Baek, Man-Gee;Noh, Gwang-Il;Park, Hyun-Su;Baek, So-Hyeon;Shin, Woon-Chul;Mo, Young-Jun;Choung, Jin-Il;Kim, Young-Doo;Kang, Hyun-Jung;Kim, Chung-Kon;Hwang, Hung-Goo;Kim, Je-Kyu
    • Korean Journal of Breeding Science
    • /
    • v.41 no.3
    • /
    • pp.314-318
    • /
    • 2009
  • A new rice cultivar "Jinbaek" carrying Xa3 and xa5 was derived from the cross between 'HR15204-38-3' with xa5 gene resistant to bacterial blight K1, K2, K3 and K3a, and F1 plant derived from the cross between Junam and Sindongjin with Xa3 gene. "Jinbaek" has approximately 125 days of growth duration from transplanting to harvesting in the west-southern coastal and Honam plain of Korea. Culm length of "Jinbaek" is 71 cm. In reaction to biotic stresses, it shows moderate resistance to blast, and wide spectrum resistance to bacterial blight pathogen, K1, K2, K3, and K3a but susceptible to rice stripe virus and blast. The milled rice of "Jinbaek" exhibits translucent, relatively clear non-glutinous endosperm and midium short grain. It has lower amylose content (18.8%) and protein content (6.2%) compared with Nampyeong. The milled rice yield of this cultivar was 5.30 MT/ha in local adaptability test of three years from 2006 to 2008. This cultivar would be adaptable to the bacterial blight-prone area in the south-western coast and Honam plain of Korea.