• Title/Summary/Keyword: military applications

Search Result 468, Processing Time 0.026 seconds

A New Moving Mobile Base Station (MMBS) Scheme for Low Power RMIMS Wireless System (PARTI: MMBS general issues, clystering and signalling Procedures) (저전력 RMIMS 무선 터미널을 위한 새로운 움직이는 이동 기지국 시스템 구조 (1부 : MMBS 일반사항, 클러스터링 및 신호절차))

  • 박수열;고윤호;유상조;김성대
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12B
    • /
    • pp.2298-2319
    • /
    • 1999
  • In this paper, we propose a new moving mobile base station (MMBS) scheme for very low power and micro-size RMIMS (radio-interfaced micro information monitoring system) terminals. RMIMS terminals can be used in various application service areas such as pollution monitoring, environment surveillance, traffic monitoring, emergency monitoring (e.g., building, bridge, railroad breakdown), security monitoring (e.g., theft, alarm) and military application. For these applications based on wireless transmission technologies, sensor type RMIMS terminals must satisfy low cost and low power design (e.g., solar power, life limited battery) requirement. In RMIMS terminal design, this low power requirement limits transmission range of uplink or reverse link and means small cell size. Also these applications using RMIMS terminals may have a little bit non real-time traffic characteristic and low scattering density in service area.

  • PDF

Investigation of lateral impact behavior of RC columns

  • Anil, Ozgur;Erdem, R. Tugrul;Tokgoz, Merve Nilay
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.123-132
    • /
    • 2018
  • Reinforced concrete (RC) columns which are the main vertical structural members are exposed to several static and dynamic effects such as earthquake and wind. However, impact loading that is sudden impulsive dynamic one is the most effective loading type acting on the RC columns. Impact load is a kind of impulsive dynamic load which is ignored in the design process of RC columns like other structural members. The behavior of reinforced concrete columns under impact loading is an area of research that is still not well understood; however, work in this area continues to be motivated by a broad range of applications. Examples include reinforced concrete structures designed to resist accidental loading scenarios such as falling rock impact; vehicle or ship collisions with buildings, bridges, or offshore facilities; and structures that are used in high-threat or high-hazard applications, such as military fortification structures or nuclear facilities. In this study, free weight falling test setup is developed to investigate the behavior effects on RC columns under impact loading. For this purpose, eight RC column test specimens with 1/3 scale are manufactured. While drop height and mass of the striker are constant, application point of impact loading, stirrup spacing and concrete compression strength are the experimental variables. The time-history of the impact force, the accelerations of two points and the displacement of columns were measured. The crack patterns of RC columns are also observed. In the light of experimental results, low-velocity impact behavior of RC columns were determined and interpreted. Besides, the finite element models of RC columns are generated using ABAQUS software. It is found out that proposed finite element model could be used for evaluation of dynamic responses of RC columns subjected to low-velocity impact load.

Vowel Classification of Imagined Speech in an Electroencephalogram using the Deep Belief Network (Deep Belief Network를 이용한 뇌파의 음성 상상 모음 분류)

  • Lee, Tae-Ju;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.1
    • /
    • pp.59-64
    • /
    • 2015
  • In this paper, we found the usefulness of the deep belief network (DBN) in the fields of brain-computer interface (BCI), especially in relation to imagined speech. In recent years, the growth of interest in the BCI field has led to the development of a number of useful applications, such as robot control, game interfaces, exoskeleton limbs, and so on. However, while imagined speech, which could be used for communication or military purpose devices, is one of the most exciting BCI applications, there are some problems in implementing the system. In the previous paper, we already handled some of the issues of imagined speech when using the International Phonetic Alphabet (IPA), although it required complementation for multi class classification problems. In view of this point, this paper could provide a suitable solution for vowel classification for imagined speech. We used the DBN algorithm, which is known as a deep learning algorithm for multi-class vowel classification, and selected four vowel pronunciations:, /a/, /i/, /o/, /u/ from IPA. For the experiment, we obtained the required 32 channel raw electroencephalogram (EEG) data from three male subjects, and electrodes were placed on the scalp of the frontal lobe and both temporal lobes which are related to thinking and verbal function. Eigenvalues of the covariance matrix of the EEG data were used as the feature vector of each vowel. In the analysis, we provided the classification results of the back propagation artificial neural network (BP-ANN) for making a comparison with DBN. As a result, the classification results from the BP-ANN were 52.04%, and the DBN was 87.96%. This means the DBN showed 35.92% better classification results in multi class imagined speech classification. In addition, the DBN spent much less time in whole computation time. In conclusion, the DBN algorithm is efficient in BCI system implementation.

Modified Piezoelectric Ceramics for Portable Ultrasonic Medical Probe Application (휴대용 의료 초음파 프로브 적용을 위한 압전체 제조 및 특성)

  • Kang, Dong Heon;Chae, Mi Na;Hong, Se Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.8
    • /
    • pp.483-488
    • /
    • 2016
  • Ultrasound imaging by using piezoelectric materials, such as lead zirconium titanate (PZT) has been one of the most preferred modes of imaging in the medical field due to its simple, low cost and non-ionizing radiation in comparison to other imaging techniques. Recently, the market demand for portable ultrasound is becoming larger with applications in developing countries, disaster area, military, and emergency purposes. However, most of ultrasound probes used is bulky and high power consumable, so unsuitable for such applications. In this study, the 3 layered ceramic specimen consisted of 128 pitches of $420{\mu}m$ in width and $450{\mu}m$ in thickness were prepared by using the Ti-rich PZT compositions co-fired at $1,050^{\circ}C$. Their electrical and ultrasound pulse-echo properties were investigated and compared to the single layer specimen. The 3 layered ultrasound probe showed 1.584 V of Vp-p, which is 3.2 times higher than single layered one, implying that it would allow effectively such a portable ultrasound probe system. The result were discussed in terms of higher capacitance, lower impedance and higher dielectric coefficient of the 3 layered ultrasound probe.

A Study on Attitude Estimation of UAV Using Image Processing (영상 처리를 이용한 UAV의 자세 추정에 관한 연구)

  • Paul, Quiroz;Hyeon, Ju-Ha;Moon, Yong-Ho;Ha, Seok-Wun
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.5
    • /
    • pp.137-148
    • /
    • 2017
  • Recently, researchers are actively addressed to utilize Unmanned Aerial Vehicles(UAV) for military and industry applications. One of these applications is to trace the preceding flight when it is necessary to track the route of the suspicious reconnaissance aircraft in secret, and it is necessary to estimate the attitude of the target flight such as Roll, Yaw, and Pitch angles in each instant. In this paper, we propose a method for estimating in real time the attitude of a target aircraft using the video information that is provide by an external camera of a following aircraft. Various image processing methods such as color space division, template matching, and statistical methods such as linear regression were applied to detect and estimate key points and Euler angles. As a result of comparing the X-plane flight data with the estimated flight data through the simulation experiment, it is shown that the proposed method can be an effective method to estimate the flight attitude information of the previous flight.

Novel Accuracy Enhancement Method for Absolute Temperature Measurement Using TEC-LESS Control in Uncooled Thermal Imaging (비냉각 열상시스템에서 TEC-Less를 이용한 절대온도 측정 정밀도 향상 기법)

  • Han, Joon Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.41-47
    • /
    • 2012
  • Every object over $O^{\circ}K$ emits radiant energy based on its own temperature. Uncooled thermal imaging system displays the detected incident radiant energy as an image by signal processing. Recently, the uncooled thermal imaging system is applied to various areas such as medical, industrial, and military applications. Also, several researches are in progress to find new applications of the uncooled thermal imaging system. In this paper, we present effective method for controlling TEC-less detector in the uncooled thermal imaging system and also present the efficient control scheme for maximizing the accuracy of temperature measurement. The proposed scheme is to apply TEC-less and temperature detection algorithm in Uncooled thermal imaging system. In results of tests performed by using the actual chamber, we acquired images of better quality than the former system and temperature measurement accuracy was improved to less than $1^{\circ}C$.

A Study on the Development of the Active Radar Reflector with Enhanced Function (개선된 기능을 갖는 능동 레이더 반사기 개발에 관한 연구)

  • 정종혁;강상욱;조영창;최병진;윤정오;오주환
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.5 no.3
    • /
    • pp.38-43
    • /
    • 2000
  • Active radar reflector may be less familiar, since their uses have been limited to military applications, especially the enhancement of the effective radar cross-sections of missile test range in the drone aircraft and missiles. Perhaps the most widely-Down applications of radar transponders are Identification Friend or Foe(IFF) and its civilian counterpart secondary surveilliance radar for Air Traffic Control(ATC), and most recently, as Search And Rescue Transponder(SART) in the Global Maritime Distress and Safety System(GMDSS). Since it happens frequently accidents on the sea, the problems of the contamination more seriously considered. The conventional navigation buoy and utilities are not sufficient to maintain the safety of the sea and thus new structured concept must be considered. Therefore, this paper propose and implement the active radar reflector with a enhanced function. The results are shown that the performance of the system is significantly improved comparing with the conventional utilities.

  • PDF

A Multi-path QoS Routing Protocol for the OFDM-TDMA Mesh Networks (OFDM-TDMA 메쉬 네트워크를 위한 다중경로 QoS 라우팅 프로토콜)

  • Choi, Jungwook;Lee, Hyukjoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.1
    • /
    • pp.57-67
    • /
    • 2015
  • A large amount of work has been done in the areas of routing, MAC, QoS, capacity, location service, cooperative communication, fault tolerance, mobility models and various applications of mesh networks thanks to their merits of cost-effective way of deployment and flexibility in extending wireline services. Although multi-path routing protocols have been proposed to be used to provide QoS and fault-tolerance, there has not been any significant results discussed that support both in the literature to our best knowledge as they are often required in military and public safety applications. In this paper, we present a novel routing protocol for a mesh network based on the OFDM-TDMA collision-free MAC that discovers and maintains multiple paths that allows retransmitting and forwarding packets that have been blocked due to a link failure using an alternative next-hop node such that the delay-capacity tradeoff is reduced and the reliability is enhanced. Simulation results show that the proposed protocol performs well in terms of both the QoS and delivery ratio.

An Improved Coyote Optimization Algorithm-Based Clustering for Extending Network Lifetime in Wireless Sensor Networks

  • Venkatesh Sivaprakasam;Vartika Kulshrestha;Godlin Atlas Lawrence Livingston;Senthilnathan Arumugam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1873-1893
    • /
    • 2023
  • The development of lightweight, low energy and small-sized sensors incorporated with the wireless networks has brought about a phenomenal growth of Wireless Sensor Networks (WSNs) in its different fields of applications. Moreover, the routing of data is crucial in a wide number of critical applications that includes ecosystem monitoring, military and disaster management. However, the time-delay, energy imbalance and minimized network lifetime are considered as the key problems faced during the process of data transmission. Furthermore, only when the functionality of cluster head selection is available in WSNs, it is possible to improve energy and network lifetime. Besides that, the task of cluster head selection is regarded as an NP-hard optimization problem that can be effectively modelled using hybrid metaheuristic approaches. Due to this reason, an Improved Coyote Optimization Algorithm-based Clustering Technique (ICOACT) is proposed for extending the lifetime for making efficient choices for cluster heads while maintaining a consistent balance between exploitation and exploration. The issue of premature convergence and its tendency of being trapped into the local optima in the Improved Coyote Optimization Algorithm (ICOA) through the selection of center solution is used for replacing the best solution in the search space during the clustering functionality. The simulation results of the proposed ICOACT confirmed its efficiency by increasing the number of alive nodes, the total number of clusters formed with the least amount of end-to-end delay and mean packet loss rate.

Current Status of Hyperspectral Remote Sensing: Principle, Data Processing Techniques, and Applications (초분광 원격탐사의 특성, 처리기법 및 활용 현용)

  • Kim Sun-Hwa;Ma Jung-Rim;Kook Min-Jung;Lee Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.4
    • /
    • pp.341-369
    • /
    • 2005
  • Hyperspectral images have emerged as a new and promising remote sensing data that can overcome the limitations of existing optical image data. This study was designed to provide a comprehensive review on definition, data processing methods, and applications of hyperspectral data. Various types of airborne, spaceborne, and field hyperspectral image sensors were surveyed from the available literatures and internet search. To understand the current status of hyperspectral remote sensing technology and research development, we collected several hundreds research papers from international journals (IEEE Transactions on Geoscience and Remote Sensing, International Journal of Remote Sensing, Remote Sensing of Environment and AVIRIS Workshop Proceedings), and categorized them by sensor types, data processing techniques, and applications. Although several hyperspectral sensors have been developing, AVIRIS has been a primary data source that the most hyperspectral remote sensing researches were relied on. Since hyperspectral data have very large data volume with many spectral bands, several data processing techniques that are particularly oriented to hyperspectral data have been developed. Although atmospheric correction, spectral mixture analysis, and spectral feature extraction are among those processing techniques, they are still in experimental stage and need further refinement until the fully operational adaptation. Geology and mineral exploration were major application in early stage of hyperspectral sensing because of the distinct spectral features of rock and minerals that could be easily observed with hyperspectral data. The applications of hyperspectral sensing have been expanding to vegetation, water resources, and military areas where the multispectral sensing was not very effective to extract necessary information.