• Title/Summary/Keyword: mid-layer angle

Search Result 20, Processing Time 0.022 seconds

Generation of Unit Shape Layer on CAD/CAM System for VLM-ST (VLM-ST용 CAD/CAM 시스템에서 단위 형상층 생성 방법 및 적용예)

  • 이상호;안동규;최홍석;양동열;문영복;채희창
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.3
    • /
    • pp.148-156
    • /
    • 2002
  • Most Rapid Prototyping (RP) processes adopt a solid Computer Aided Design (CAD) model, which will be sliced into thin layers of constant thickness in the building direction. Each cross-sectional layer is successively deposited and, simultaneously, bonded onto the previous layer; and eventually the stacked layers from a physical part of the model. A new RP process, the transfer-type Variable Lamination Manufacturing process using expandable polystyrene foam sheet (VLM-ST), has been developed to reduce building time and to improve the surface finish of parts with the thick layers and a sloping surface. This paper describes the generation of Unit Shape Layer (USL), the cutting path data of the linen. hotwire cutter for the VLM-ST process. USL is a three-dimensional layer with a thickness of more than 1 mm and a side slope, and it is the basic unit of cutting and building in the VLM-ST process. USL includes data such as layer thickness, positional coordinates, side angles of each layer, hotwire cutting speed, the heat input to the hotwire, and reference shape. The procedure of generating USL is as follows: (1)Generation of the mid-slice from the CAD model, (2)Conversion of the mid-slice into a simply connected domain, (3)Generation to the reference shape for the mid-slice, (4)Calculation of the rotation angle of the hotwire of the cutting system.

An Analysis of Seismic Response of High - Rise Building with Mid-Story Isolation System According to Change of Characteristics of the Seismic Isolation Device (중간층 면진시스템이 적용된 고층건물의 면진장치 특성변화에 따른 지진응답분석)

  • Kang, Joo-Won
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.8
    • /
    • pp.149-156
    • /
    • 2019
  • In this study, dynamic responses of high - rise buildings were analyzed through the change of horizontal stiffness and yield strength among characteristics of seismic isolation system by applying middle - layer seismic isolation system to high - rise buildings of 120m height. As a result in order to prevent the displacement of the isolation layer and to control the maximum torsion angle, it is possible to appropriately control by increasing or decreasing the horizontal stiffness and the yield strength. However, depending on the maximum torsional angle and the hysteretic behavior of the seismic isolation system, excessive yield strength and horizontal stiffness increase may induce the elastic behavior of the structure and amplify the response. Therefore, it is considered that it is necessary to select the property value of the appropriate isolation device.

Effect of Incidence Angle on the Turbulence Structure in the Wake of a Turbine Rotor Blade (입사각이 터빈 동익 후류의 난류구조에 미치는 영향)

  • Chang, Sung-Il;Lee, Sang-Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.55-62
    • /
    • 2003
  • This paper describes the effect of the incidence angle on the turbulence structure in the wake of a turbine rotor blade at the low inlet free-stream turbulence level. For three incidence angles of -5, 0 and 5 degrees, mid-span energy spectrum as well as mid-span profiles of mean velocity magnitude and turbulence intensity are reported at three downstream locations in the wake. Vortex shedding frequencies are obtained from the energy spectrum. The result shows that as the incidence angle changes from-5 to 5 degrees, the boundary layer on the suction surface tends to be thickened, which results in widening of the wake. Strouhal numbers based on the shedding frequencies have a nearly constant value of 0.3, independent of tested incidence angles.

  • PDF

Seismic Response Control of Mid-Story Isolation System for Planar Irregular Structures (평면 비정형 구조물에 적용된 중간층 면진 시스템의 지진 응답 제어 성능 분석)

  • Park, Hyo-Sun;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.2
    • /
    • pp.109-116
    • /
    • 2019
  • In this study, the seismic response is investigated by using a relatively low-rise building under torsion-prone conditions and three seismic loads with change of the location of the seismic isolation system. LRB (Lead Rubber Bearing) was used for the seismic isolator applied to the analytical model. Fixed model without seismic isolation system was set as a basic model and LB models using seismic isolation system were compared. The maximum story drift ratio and the maximum torsional angle were evaluated by using the position of the seismic layer as a variable. It was confirmed that the isolation device is effective for torsional control of planar irregular structures. Also, it was shown that the applicability of the mid-story seismic isolation system. Numerical analyses results presented that an isolator installed in the lower layer provided good control performance for the maximum story drift ratio and the maximum torsional angle simultaneously.

Strain Analysis in the Slipline Field for Strip Drawing (판재인발 슬립라인장의 변형해석)

  • 구인회
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.660-669
    • /
    • 1989
  • The strain distribution in a wide strip drawn through a wedge-shaped die is obtained from the numerical integration of strain increments along the flow path of material points in the slipline field for a non-hardening material under the plane strain condition. It is shown that the strain in the surface layer increases with friction and that the strain at the mid-plane is a function of area reduction only. The redundant deformation factor, obtained from the average strain in a drawn strip, increases with friction. For the workability analysis of a strip drawing process, the strain states along with hydrostatic stresses are needed for the evaluation of a damage function based on the hole-growth mechanism of ductile fracture. The critical maximum of the damage function is assumed to be a material constant. As a result, mid-plane cracking is likely to occur in a process at a small reduction, with a large die angle, and in poor lubrication. Distortions of an initially transverse line are also calculated.

The Optical properties of Fe2O3/Na3AlF6/Fe2O3/Cu, Al, Cr Multi Layered Thin Film depending on the Optical Thickness (Fe2O3/Na3AlF6/Fe2O3/Cu, Al, Cr 다층박막의 광학적 두께에 따른 광학특성)

  • Kim, Jun-Sik;Jang, Gang-Jae;Jang, Gun-Eik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.7
    • /
    • pp.665-668
    • /
    • 2008
  • Multi-layered thin films of $Fe_2O_3/Na_3AlF_6/Fe_2O_3/Cu$, Cr, Al were deposited on glass substrate by evaporation process. As high and low refractive index material, $Fe_2O_3$ and $Na_3AlF_6$ were selected and additionally Cu, Al and Cr were chosen as mid reflective layer respectively. Optical properties including reflectance were systematically studied depending on optical thickness of $Na_3AlF_6$ especially $0.25{\lambda}$ and $0.5{\lambda}$. In order to expect the experimental result, the simulation program, the Essential Macleod Program(EMP) was adopted and compared with the experimental data. Based on the results taken by spectrophotometer at viewing angle $45^{\circ}C$, the $Fe_2O_3/Na_3AlF_6/Fe_2O_3/Cu$ show the colour rage between red and orange in $0.25{\lambda}$ and green and pupple in $0.5{\lambda}$ respectively. When the Al was used as mid reflective layers in $Fe_2O_3/Na_3AlF_6/Fe_2O_3$ system, typical yellow colour and mixed colour between green and pupple were appeared in $0.25{\lambda}$ and $0.5{\lambda}$ of $Na_3AlF_6$ respectively. As compared the experimental result to simulation data, it was found out that the experimental data is relatively well matched with the EMP simulation data.

Validity of Two-layered Ocean Bottom Model for Ray Model (음선 모델에 적용된 이층 해저 바닥 모델의 유효성)

  • Lee, Keunhwa;Seong, Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.6
    • /
    • pp.470-478
    • /
    • 2015
  • A heuristic method treating a layered ocean bottom in a ray modeling is to use the plane wave reflection coefficient for multiple-layered structure, named an one-layer assumption in this paper. We examine the validity of one-layer assumption in the case of two-layered ocean bottom, and obtain a simple inequality condition depending on the sound speed ratio, the ratio of layer thickness to source-receiver range, and the grazing angle of first reflected ray. From this inequality condition, it is shown that an one-layer assumption can be applicable to ray propagation problems at mid frequencies. Finally, numerical experiments are performed in the ocean environment similar to the East Sea in Korea. Incoherent transmission loss is calculated by the geometrical beam model with the plane wave reflection coefficient for multiple-layered ocean bottom and compared with the result of SNUPE 2.0, which is a parabolic equation package developed in Seoul National University.

Six Sigma Robust Design of Composite Hand for LCD Glass Transfer Robot (LCD 유리 이송용 복합재료 로봇 핸드의 식스 시그마 강건설계)

  • Nam Hyunwook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.3 s.234
    • /
    • pp.455-461
    • /
    • 2005
  • This research studied robust design of composite hand for LTR (LCD glass Transfer Robot). $1^{st}$ DOE (Design of Experiment) was conducted to find out vital few Xs. 108 experiments were performed and their results were statistically analyzed. Pareto chart analysis shows that the geometric parameters (height and width of composite beam) are more important than material parameters $(E_{1},\;E_{2})$ or stacking sequence angle. Also, the stacking sequence of mid-layer is more important than that of outer-layer. The main effect plots shows that the maximum deflection of LTR hand is minimized with increasing height, width of beam and layer thickness. $2^{nd}$ DOE was conducted to obtain RSM (Response Surface Method) equation. 25 experiments were conducted. The CCD (Central Composite Design) technique with four factors was used. The coefficient of determination $(R^{2})$ for the calculated RSM equation was 0.989. Optimum design was conducted using the RSM equation. Multi-island genetic algorithm was used to optimum design. Optimum values for beam height, beam width, layer thickness and beam length were 24.9mm, 186.6mnL 0.15mm and 2402.4mm respectively. An approximate value of 0.77mm in deflection was expected to be a maximum under the optimum conditions. Six sigma robust design was conducted to find out guideline for control range of design parameter. To acquire six sigma level reliability, the standard deviation of design parameter should be con trolled within $2{\%}$ of average design value

Corrosion Behavior of High Pressure Die Cast Al-Ni and Al-Ni-Ca Alloys in 3.5% NaCl Solution

  • Arthanari, Srinivasan;Jang, Jae Cheol;Shin, Kwang Seon
    • Corrosion Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.100-108
    • /
    • 2017
  • In this investigation corrosion behavior of newly developed high-pressure die cast Al-Ni (N15) and Al-Ni-Ca (NX1503) alloys was studied in 3.5% NaCl solution. The electrochemical corrosion behavior was evaluated using open circuit potential (OCP) measurement, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) techniques. Potentiodynamic polarization results validated that NX1503 alloy exhibited lower corrosion current density ($i_{corr}$) value ($5.969{\mu}A/cm^2$) compared to N15 ($7.387{\mu}A/cm^2$). EIS-Bode plots revealed a higher impedance (${\mid}Z{\mid}$) value and maximum phase angle value for NX1503 than N15 alloy. Equivalent circuit curve fitting analysis revealed that surface layer ($R_1$) and charge transfer resistance ($R_{ct}$) values of NX1503 alloy was higher compared to N15 alloy. Immersion corrosion studies were also conducted for alloys using fishing line specimen arrangement to simultaneously measure corrosion rates from weight loss ($P_W$) and hydrogen volume ($P_H$) after 72 hours and NX1503 alloy had lower corrosion rate compared to N15 alloy. The addition of Ca to N15 alloy significantly reduced the Al3Ni intermetallic phase and further grain refinement may be attributed for reduction in the corrosion rate.

Prediction of Poisson's ratio degradation in hygrothermal aged and cracked [θm/90n]s composite laminates

  • Khodjet-Kesb, M.;Adda bedia, E.A.;Benkhedda, A.;Boukert, B.
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.57-72
    • /
    • 2016
  • The Poisson ratio reduction of symmetric hygrothermal aged $[{\theta}_m/90_n]_s$ composite laminates containing a transverse cracking in mid-layer is predicted by using a modified shear-lag model. Good agreement is obtained by comparing the prediction models and experimental data published by Joffe et al. (2001). The material properties of the composite are affected by the variation of temperature and transient moisture concentration distribution in desorption case, and are based on a micro-mechanical model of laminates. The transient and non-uniform moisture concentration distribution give rise to the transient Poisson ratio reduction. The obtained results represent well the dependence of the Poisson ratio degradation on the cracks density, fibre orientation angle of the outer layers and transient environmental conditions. Through the presented study, we hope to contribute to the understanding of the hygrothermal behaviour of cracked composite laminate.