• Title/Summary/Keyword: microwave vacuum

Search Result 210, Processing Time 0.031 seconds

Deep Space Maneuver by Microwave Discharge Ion Engines onboard "HAYABUSA" Asteroid Explorer

  • Kuninaka, Hitoshi;Nishiyama, Kazutaka;Shimizu, Yukio;Toki, Kyoichiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.306-313
    • /
    • 2004
  • The microwave discharge ion engine generates plasmas of both the main ion source and the neutralizer using 4㎓ microwave without discharge electrodes and hollow cathodes, so that long life and durability against oxygen and air are expected. The MUSES-C “HAYABUSA” asteroid explorer installing four microwave discharge ion engines “$\mu$10s” was launched into deep space by M-V rocket No.5 on May 9, 2003. After vacuum exposure and several runs of baking for reduction of residual gas the ion engine system established the continuous acceleration of the spacecraft toward the asteroid “ITOKAWA”. The Doppler shift measurement of the communication microwave revealed the performance of ion engines, which is 8mN thrust force for a single unit with 3,200sec specific impulse at 23mN/㎾ thrust power ratio. At the end of 2003 the accumulated operational time exceeded 8,000 hour and unit. HAYABUSA will execute the Earth swing-by on June 2004 and arrive at the asteroid in 2005 and return to Earth in 2007.

  • PDF

Characterization of linear microwave plasma according to conditions of TEM waveguide using fluid simulation

  • Seo, Gwon-Sang;Han, Mun-Gi;Kim, Dong-Hyeon;Lee, Hae-Jun;Lee, Ho-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.216-216
    • /
    • 2016
  • 마이크로웨이브를 이용한 플라즈마 소스의 경우 동작 압력 범위가 넓고 전자가열이 효율적이며, 낮은 이온에너지를 갖는 고밀도의 플라즈마를 발생시킬 수 있는 장점이 있어 최근 많은 연구가 되고 있다. 그 중에서 본 연구에 이용된 선형 안테나를 사용하는 마이크로웨이브 플라즈마 장치는 구성이 간단하고, 직 병렬 결합을 통해 고효율, 고밀도의 플라즈마 생성이 가능한 장점이 있다. 본 연구에서는 선형 안테나를 사용하는 마이크로웨이브 플라즈마 소스의 구조에 따른 특성 변화를 2차원 유체 시뮬레이션을 통하여 검증하였다. Maxwell's equation, Continuity equation, Electromagnetic wave equation 등을 이용해 동축관의 유전율과 Gap size에 따른 특성 변화를 관찰하였다. 동축 형태의 도파관을 따라 전달되는 Wave의 파장을 조절하도록 구조를 변화시켜 플라즈마 특성의 변화를 관찰하고 분석하였다.

  • PDF

Characterization of linear microwave plasma based on N2/SiH4/NH3 gases using fluid simulation

  • Seo, Gwon-Sang;Han, Mun-Gi;Kim, Dong-Hyeon;Lee, Hae-Jun;Lee, Ho-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.131.2-131.2
    • /
    • 2015
  • 마이크로웨이브를 이용한 플라즈마는 효율적인 전자가열이 가능하며, 낮은 이온에너지를 가지는 고밀도 플라즈마를 생성시킬 수 있다는 장점이 있다. 최근 산화물 반도체 및 대화면 디스플레이 장치내 소자의 보호막 증착용으로 저온 PECVD (Plasma Enhanced Chemical Vapor Deposition) 공정 및 장치의 필요성에 따라 마이크로웨이브를 이용한 PECVD 장치가 주목 받고 있다. 본 연구에서는 실리콘 나이트라이드 공정 장치 개발을 위한 2차원 시뮬레이션 모델을 완성하였다. Global modeling을 이용하여 확보한 Chemical reaction data에 대한 검증을 하였다. Maxwell's equation, continuity equation, electromagnetic wave equation 등을 이용하여 Microwave의 파워 및 압력에 따른 전자 밀도, 전자 온도등의 플라즈마 변수의 변화를 관찰하였다. 또한 Navier Stokes equation을 추가하여 챔버 내의 Gas flow의 흐름을 고려한 시뮬레이션을 진행하여 분석하였다.

  • PDF

2D-Axisymmetric Fluid Simulation of TEM Waveguide Linear Microwave Plasma Source

  • Han, Mun-Gi;Seo, Gwon-Sang;Yun, Yong-Su;Kim, Dong-Hyeon;Lee, Hae-Jun;Lee, Ho-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.222.1-222.1
    • /
    • 2014
  • Flexible device 및 OLED 디스플레이 제조를 위한 산화물 반도체 보호막 증착 및 encapsulation 공정을 위해 균일한 대면적 플라즈마를 만들기 위한 다양한 연구가 진행되고 있다. 초고주파 플라즈마는 고밀도, 고효율의 플라즈마를 저진공에서 쉽게 생성시킬 수 있고 다양한 전력결합방법을 통해 대면적 확장성이 우수한 장점이 있다. 본 연구에서는 TEM 웨이브가이드로 파워가 전달되는 선형 초고주파 플라즈마 소스에 대한 2차원축대칭 유체 시뮬레이션을 수행하였다. Ar 가스 압력과 초고주파 입력전력이 증가함에 따라 전자밀도가 증가하였고 도파관 방향으로 플라즈마의 길이가 증가함이 관측되었다. Quartz Tube 표면 가까이에서 전자밀도가 가장 높게 나타났다. 전자의 에너지 손실 채널중 가장 많은 부분을 차지하는 것은 여기종 생성에 따른 에너지 손실이었으며 탄성 충돌에 의한 에너지 손실이 두 번째로 큰 부분을 차지하였다.

  • PDF

Effect of Microwave Treatment and Packaging Methods on Extending the Shelf-Life of RTE Rice Balls at Room Temperature (상온 보관 주먹밥의 유통연장을 위한 마이크로파 살균기술 및 포장기술에 관한 연구)

  • Bae, Young-Min;Lee, Sun-Young
    • Korean journal of food and cookery science
    • /
    • v.26 no.2
    • /
    • pp.165-170
    • /
    • 2010
  • Although the demand of ready-to-eat (RTE) foods such as Kimbab is growing, large quantities and wide distribution of these foods is difficult due to their short shelf-life, exposed packaging with hygienic risk, and decreased quality at refrigerator temperatures. This study was undertaken to develop preservation and storage methods to extend the shelf-life of RTE rice products using microwave and packaging methods such as vacuum and modified atmosphere packages. RTE rice ball samples inoculated with Escherichia coli, Salmonella Typhimurium, Listeria monocytogenes, Staphylococcus aureus or Bacillus cereus were microwave treated for 0, 30, 60, 90 and 120 seconds. Populations of pathogens on the rice balls were significantly reduced with an increase in treatment time. There were more than 5 log reductions of all pathogens when the samples were microwave treated for 60 seconds. RTE rice balls inoculated with two pathogens (S. aureus and B. cereus) were packaged via air, vacuum, $N_2$ gas, and $CO_2$ gas following microwave treatment for 90 seconds. The initial S. aureus and B. cereus concentration before treatment was 7.60 and 6.59 log CFU/g, and these levels were reduced by 3.37 and 2.18 log CFU/g after microwave treatment. The levels of pathogens were significantly increased during storage time at room temperature. $CO_2$ packaging was the most effective at inhibiting microbial growth among the tested packaging methods. The levels of total mesophilic count, S. aureus and B. cereus after 5 days of storage were 7.7, 8.8 and 9.3 log CFU/g in air packaged samples and 2.4, 3.2 and 8.3 log CFU/g in $CO_2$ gas packaged samples, respectively. However, after 3 days of storage higher levels of B. cereus were observed in all samples, indicating that the samples were not safe to be consumed. Base on these results, microwave treatment and MAP packaging methods using $CO_2$ gas could be used as a potential method for extending the shelf-life of RTE foods.

Drying Boards of Populus alba×P. glandulosa in Conventional, High-Temperature and Microwave-Vacuum Kilns (은사시나무 판재의 열기건조, 고온건조, 마이크로파-진공 건조)

  • Kang, Ho-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.31-37
    • /
    • 2003
  • Flat-sawn 32 mm-thick boards of Populus alba×P. glandulosa, one of major plantation species in this country, were dried in conventional, high-temperature and microwave-vacuum (MW/V) kilns. The average green specific gravity of the specimens used in this study was 0.349±0.074. Their average green moisture contents of heartwoods and sapwoods were around 200% and 100%, respectively. From green to oven-dry they shrunk 2.4 and 7.3% in radial and tangential directions, respectively, and there was no discrepancy between heartwoods and sapwoods. It took 65, 35 and 22 hours to dry from green to 10% moisture content in conventional, high-temperature and MW/V kilns, respectively. A colorimetry study showed that the surface color of the specimens dried in a MW/V kiln was clearer and lighter than those in other kilns.

Heating Behavior of Silicon Carbide Fiber Mat under Microwave

  • Khishigbayar, Khos-Erdene;Seo, Jung-Min;Cho, Kwang-Youn
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.707-711
    • /
    • 2016
  • A small diameter of SiC fiber mat can produce much higher heat under microwave irradiation than the other types of SiC materials. Fabrication of high strength SiC fiber consists of iodine vapor curing on polycarbosilane precursor and heat treatment process. The curing stage of polycarbosilane fiber was maintained at $150-200^{\circ}C$ in a vacuum condition under the iodine vapor to fabricate a high thermal radiation SiC fiber. The structure and morphology of the fibers were characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TG) and scanning electron microscopy (SEM). In this study, the thermal properties of SiC fiber mats under microwave have been analyzed with an IR thermal camera and its image analyzer. The prepared SiC fiber mats radiated high temperature with extremely high heating rate up to $1100^{\circ}C$ in 30 seconds. The fabricated SiC fiber mats were not oxidized after the heat radiation process under the microwave irradiation.

Selective Separation of Semiconducting Single-Walled Carbon Nanotubes via Microwave Irradiation (마이크로웨이브 조사를 이용한 반도체성 단일벽 탄소나노튜브의 선택적 분리)

  • Kim, Sung-Hwan;Song, Woo-Seok;Kim, Yoo-Seok;Kim, Soo-Youn;Park, Chong-Yun
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.4
    • /
    • pp.294-299
    • /
    • 2011
  • In this study, single-walled carbon nanotubes (SWCNTs) were synthesized on a Fe/$Al_2O_3$/Si layer by thermal chemical vapor deposition. Metallic SWCNTs were selectively removed by microwave irradiation. Electrical and structural characterizations of the SWCNTs clearly revealed that the metallic SWCNTs were almost removed by microwave irradiation for 120 sec. The remained semiconducting SWCNTs with a high crystalline structure were obtained over 95%. This method would provide useful information for applications to SWCNTs-based field effect transistors and multifaceted nanoelectronics.

Self Annealing Effects of Arsenic Ion Implanted Amorphous Carbon Films during Microwave Plasma Chemical Vapor Deposition (As 이온 주입된 비정질 탄소 박막의 마이크로플라즈마 화학기상증착법에 의한 자동 어닐링 효과에 관한 연구)

  • Cho, E.S.;Kwon, S.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.1
    • /
    • pp.31-36
    • /
    • 2013
  • For the simplification of doping process in amorphous carbon film, arsenic (As) ions were implanted on the nucleated silicon wafer before the growth process. Then amorphous carbon films were grown at the condition of $CH_4/H_2=5%$ by microwave plasma chemical vapour deposition. Because the implanted seeds were grown at the high temperature and the implanted ions were spread, it was possible to reduce the process steps by leaving out the annealing process. When the implanted amorphous carbon films were electrically characterized in diode configuration, field emission current of $0.1mA/cm^2$ was obtained at the applied electric field of about $2.5V/{\mu}m$. The results show that the implanted As ions were sufficiently doped by the self-annealing process by using the growth after implantation.

A Study on a Drying Machine with Microwave at Vacuum Condition for Discarded Citrus Scrapes (감귤박 건조용 진공고주파 건조기개발에 관한 연구)

  • Ko, Gwang-Soo;Park, Youn Cheol;Yoon, Hyung-Kee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.1
    • /
    • pp.21-25
    • /
    • 2014
  • A drying machine for discarded Citrus scrap was developed in this study. The Citrus produced in Jeju Province was treated as wastes (a) after making a beverage, such as drinking juice, and (b) if the size of the product did not fit with its agricultural product criteria. Various types of drying machine were developed in this study, and different kinds of technologies were combined improve the performance. To enhance the performance, the system was maintained in a vacuum state, and a high frequency micro wave was activated to the waste Citrus scrap, to heat up the moisture inside the Citrus kernels. The frequency of the micro-wave was 2.6 GHz, which is the resonant frequency of the molecules. Experiments were conducted with a vacuum of 50, 100, 150, 300, 500, and 700 mbar. The waste Citrus scrap has two types of status : (a) original scrap, and (b) mixed with blender. As results, specimen (a) shows a 0.13 g/sec evaporation rate, while specimen (b) shows a 0.19 g/sec rate, at 50 mbar of environment vacuum condition. For the drying efficiency, specimens (a) and (b) show 0.15 g/W and 0.24 g/W, respectively.