Browse > Article
http://dx.doi.org/10.5757/JKVS.2011.20.4.294

Selective Separation of Semiconducting Single-Walled Carbon Nanotubes via Microwave Irradiation  

Kim, Sung-Hwan (BK21 Physics Research Division and Department of Energy Science, Sungkyunkwan University)
Song, Woo-Seok (BK21 Physics Research Division and Department of Energy Science, Sungkyunkwan University)
Kim, Yoo-Seok (BK21 Physics Research Division and Department of Energy Science, Sungkyunkwan University)
Kim, Soo-Youn (BK21 Physics Research Division and Department of Energy Science, Sungkyunkwan University)
Park, Chong-Yun (BK21 Physics Research Division and Department of Energy Science, Sungkyunkwan University)
Publication Information
Journal of the Korean Vacuum Society / v.20, no.4, 2011 , pp. 294-299 More about this Journal
Abstract
In this study, single-walled carbon nanotubes (SWCNTs) were synthesized on a Fe/$Al_2O_3$/Si layer by thermal chemical vapor deposition. Metallic SWCNTs were selectively removed by microwave irradiation. Electrical and structural characterizations of the SWCNTs clearly revealed that the metallic SWCNTs were almost removed by microwave irradiation for 120 sec. The remained semiconducting SWCNTs with a high crystalline structure were obtained over 95%. This method would provide useful information for applications to SWCNTs-based field effect transistors and multifaceted nanoelectronics.
Keywords
Single-walled carbon nanotubes; Microwave; Thermal chemical vapor deposition;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 E. T. Thostenson and T. -W. Chou, Composites: Part A 30, 1055 (1999).   DOI
2 L. X. Benedict, S. G. Louie, and M. L. Cohen, Phys. Rev. B. 52, 8541 (1995).   DOI
3 S. D. M. Brown, A. Jorio, P. Corio, M. S. Dresselhaus, G. Dresselhaus, R. Saito, and K. Kneipp, Phys. Rev. B. 63, 155414 (2001).   DOI
4 H. C. Shim, J. W. Song, Y. K. Kwak, S. Kim, and C. S. Han, Nanotechnology 20, 65707 (2009).   DOI
5 W. Lin, K. S. Moon, S. Zhang, Y. Ding, J. Shang, M. Chen, and C. P. Wong, ACS Nano 4, 1716 (2010).   DOI
6 Z. Yao, C. L. Kane, and C. Dekker, Phys. Rev. Lett. 84, 2941 (2000).   DOI
7 C. T. White and T. N. Todorov, Nature 393, 240 (1998).   DOI
8 A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, Nature 424, 654 (2003).   DOI
9 S. J. Tans, A. R. M. Verschueren, and C. Dekker, Nature 393, 49 (1998).   DOI
10 T. Durkop, S. A. Getty, E. Cobas, and M. S. Fuhrer, Nano Lett. 4, 35 (2004).   DOI
11 R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Appl. Phys. Lett. 60, 2204 (1992).   DOI
12 G. Hong, B. Zhang, B. Peng, J. Zhang, W. M. Choi, J. Y. Choi, J. M. Kim, and Z. Liu, J. Am. Chem. Soc. 131, 14642 (2009).   DOI
13 Z. Chen, J. Appenzeller, J. Knoch, Y. Lin, and P. Avouris, Nano Lett. 5, 1497 (2005).   DOI
14 R. Krupke, F. Hennrich, H. V. Lohneysen, and M. M. Kappes, Science 301, 344 (2003).   DOI   ScienceOn
15 G. Zhang, P. Qi, X. Wang, Y. Lu, X. Li, R. Tu, S. Bangsaruntip, D. Mann, L. Zhang, and H. Dai, Science 314, 974 (2006).   DOI
16 M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, and M. C. Hersam, Nature Nanotechnol. 1, 60 (2006).   DOI
17 W. Song, W. C. Choi, C. Jeon, D. H. Ryu, S. Y. Lee, Y. S. Shin, and C. -Y. Park, J. Korean Vaccum Soc. 16, 377 (2007).   DOI
18 S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, and R. B. Weisman, Science 298, 2361 (2002).   DOI   ScienceOn
19 M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Phys. Rep. 409, 47 (2005).   DOI