• Title/Summary/Keyword: microvia

Search Result 3, Processing Time 0.018 seconds

Experimental and Numerical Analysis of Microvia Reliability for SLP (Substrate Like PCB) (실험 및 수치해석을 이용한 SLP (Substrate Like PCB) 기술에서의 마이크로 비아 신뢰성 연구)

  • Cho, Youngmin;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.1
    • /
    • pp.45-54
    • /
    • 2020
  • Recently, market demands of miniaturization, high interconnection density, and fine pitch of PCBs continuously keep increasing. Therefore, SLP (substrate like PCB) technology using a modified semi additive process (MSAP) has attracted great attention. In particular, SLP technology is essential for the development of high-capacity batteries and 5G technology for smartphones. In this study, the reliability of the microvia of hybrid SLP, which is made of conventional HDI (high density interconnect) and MSAP technologies, was investigated by experimental and numerical analysis. Through thermal cycling reliability test using IST (interconnect stress test) and finite element numerical analysis, the effects of various parameters such as prepreg properties, thickness, number of layers, microvia size, and misalignment on microvia reliability were investigated for optimal design of SLP. As thermal expansion coefficient (CTE) of prepreg decreased, the reliability of microvia increased. The thinner the prepreg thickness, the higher the reliability. Increasing the size of the microvia hole and the pad will alleviate stress and improve reliability. On the other hand, as the number of prepreg layers increased, the reliability of microvia decreased. Also, the larger the misalignment, the lower the reliability. In particular, among these parameters, CTE of prepreg material has the greatest impact on the microvia reliability. The results of numerical stress analysis were in good agreement with the experimental results. As the stress of the microvia decreased, the reliability of the microvia increased. These experimental and numerical results will provide a useful guideline for design and fabrication of SLP substrate.

Copper thickness and thermal reliability of microvias produced by laser-assisted seeding (LAS) process in printed circuit board (PCB) manufacture

  • Leung, E. S.W.;Yung, W. K.C.
    • International Journal of Quality Innovation
    • /
    • v.2 no.2
    • /
    • pp.69-92
    • /
    • 2001
  • The laser-assisted seeding (LAS) process has potential to replace conventional electroless copper plating in Printed Circuit Board (PCB) manufacturing since it combines the steps of laser drilling and plating into one single process. In the LAS process, the single extra LAS step can metallize a microvia. Thus, the process steps can be greatly reduced and the productivity enhanced, but also the high aspect ratio microvias can be metallized. The objectives of this paper are to study the LAS copper thickness within PCB microvias and the thermal reliability of the microvias produced by this process. It was found that results were satisfactory in both the reliability test and also the LAS copper thickness which both comply with IPC standard, the copper thickness produced by the LAS process is sufficient for subsequent electro-plating process. The reliability of the microvias produced by LAS process is acceptable which are free from any voids, corner cracks, and distortion in the plated copper.

  • PDF