• Title/Summary/Keyword: microtubules

Search Result 169, Processing Time 0.037 seconds

Microtubule Inhibitory Effects of Various SJ Compounds on Tissue Culture Cells

  • Lee Jong Han;Kang Dong Wook;Kwon Ho Suk;Lee Sun Hwan;Park Si Kyung;Chung Sun Gan;Chon Eui Hwan;Paik Soon Young;Lee Joo Hun
    • Archives of Pharmacal Research
    • /
    • v.27 no.4
    • /
    • pp.436-441
    • /
    • 2004
  • SJ compounds (SJ8002 and related compounds) are a group of novel anticancer agents (Cho, Chung, Lee, Kwon, Kang, Joo, and Oh. PCT/KR02/00392). To explore the anticancer mechanism of these compounds, we examined the effect of SJ8002 on microtubules of six human cell lines. At a high concentration ($2\;{\mu}g/mL$), SJ8002 effectively disrupted microtubules of the six cell lines within 1 h. At lower concentrations ($0.05\~1.0\;{\mu}g/mL$), the antimicrotubule activity of SJ8002 varied defending on cell lines. The inhibition of in vitro polymerization of pure tubulin by SJ8002 suggested that SJ8002 acts on free tubulin, inhibits the polymerization of tubulin dimer into microtubules, and hence induces the depolymerization of microtubules.

Non-local orthotropic elastic shell model for vibration analysis of protein microtubules

  • Taj, Muhammad;Majeed, Afnan;Hussain, Muzamal;Naeem, Muhammad N.;Safeer, Muhammad;Ahmad, Manzoor;Khan, Hidayat Ullah;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.25 no.3
    • /
    • pp.245-253
    • /
    • 2020
  • Vibrational analysis in microtubules is examined based on the nonlocal theory of elasticity. The complete analytical formulas for wave velocity are obtained and the results reveal that the small scale effects can reduce the frequency, especially for large longitudinal wave-vector and large circumferential wave number. It is seen that the small scale effects are more significant for smaller wave length. The methods and results may also support the design and application of nano devices such as micro sound generator etc. The effects of small scale parameters can increase vibrational frequencies of the protein microtubules and cannot be overlooked in the analysis of vibrating phenomena. The results for different modes with nonlocal effect are checked.

Mislocalization of TORC1 to Lysosomes Caused by KIF11 Inhibition Leads to Aberrant TORC1 Activity

  • Jang, Yoon-Gu;Choi, Yujin;Jun, Kyoungho;Chung, Jongkyeong
    • Molecules and Cells
    • /
    • v.43 no.8
    • /
    • pp.705-717
    • /
    • 2020
  • While the growth factors like insulin initiate a signaling cascade to induce conformational changes in the mechanistic target of rapamycin complex 1 (mTORC1), amino acids cause the complex to localize to the site of activation, the lysosome. The precise mechanism of how mTORC1 moves in and out of the lysosome is yet to be elucidated in detail. Here we report that microtubules and the motor protein KIF11 are required for the proper dissociation of mTORC1 from the lysosome upon amino acid scarcity. When microtubules are disrupted or KIF11 is knocked down, we observe that mTORC1 localizes to the lysosome even in the amino acid-starved situation where it should be dispersed in the cytosol, causing an elevated mTORC1 activity. Moreover, in the mechanistic perspective, we discover that mTORC1 interacts with KIF11 on the motor domain of KIF11, enabling the complex to move out of the lysosome along microtubules. Our results suggest not only a novel way of the regulation regarding amino acid availability for mTORC1, but also a new role of KIF11 and microtubules in mTOR signaling.

Electron Microscopic Study on the Spermiogenesis of Cipangopaludina chinensis malleata (Reeve) (논우렁이[Cipangopaludina chinensis malleata (Reeve)]의 精蟲形成 過程에 관한 電子顯微鏡的 硏究)

  • Kim, Ju-Hee;Park, Won-Chul
    • The Korean Journal of Zoology
    • /
    • v.29 no.2
    • /
    • pp.121-140
    • /
    • 1986
  • The spermiogenesis of Cipangopaludina chinensis malleata began with the changes of nucleus and cytoplasm. The chromatin in the nucleus began to stack and condense around perinuclear envelope. Axonema (doublet microtubules of 9+2) appeared in the cytoplasm. After this process, the cytoplasm was protruded and the bell-shaped nucleus was located on protruding part of it. The electron dense masses were distributed throughout cytoplasm and lysed or secreted by exocytosis of lysosomal vacuoles. Especially, some mitochondria were migrated by the doublet microtubules of axonema toward nucleus. The axoneme was enclosed by electron dense materials after exocytosis of unnecessary materials for the tail formation. The electron dense masses were released and migrated into the each part through microtubules or axonemal doublet microtubules as the granular particles. These granular particles were containing glycogen. Ultimately, the condensed head developed into helical and neck region into cylindrical shape respectively. The mitochondria which have regular lamellar layers at cross axis became to middle piece, and then spermatozoon was completely matured. Thus, these phenomena showed special processes in spermiogenesis, those were as follows; chromatin in the head was condensed, the head was changed into helical shape, and cytoplasmic materials are migrated and transferred into the each part in the tail by mitochondria and microtubules.

  • PDF

Cotton GhKCH2, a Plant-specific Kinesin, is Low-affinitive and Nucleotide-independent as Binding to Microtubule

  • Xu, Tao;Sun, Xuewei;Jiang, Shiling;Ren, Dongtao;Liu, Guoqin
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.723-730
    • /
    • 2007
  • Kinesin is an ATP-driven microtubule motor protein that plays important roles in control of microtubule dynamics, intracellular transport, cell division and signal transduction. The kinesin superfamily is composed of numerous members that are classified into 14 subfamilies. Animal kinesins have been well characterized. In contrast, plant kinesins have not yet to be characterized adequately. Here, a novel plant-specific kinesin gene, GhKCH2, has been cloned from cotton (Gossypium hirsutum) fibers and biochemically identified by prokaryotic expression, affinity purification, ATPase activity assay and microtubule-binding analysis. The putative motor domain of GhKCH2, $M_{396-734}$ corresponding to amino acids Q396-N734 was fused with 6$\times$His-tag, soluble-expressed in E. coli and affinity-purified in a large amount. The biochemical analysis demonstrated that the basal ATPase activity of $M_{396-734}$ is not activated by $Ca^{2+}$, but stimulated 30-fold max by microtubules. The enzymatic activation is microtubule-concentration-dependent, and the concentration of microtubules that corresponds to half-maximum activation was about 11 ${\mu}M$, much higher than that of other kinesins reported. The cosedimentation assay indicated that $M_{396-734}$ could bind to microtubules in vitro whenever the nucleotide AMP-PNP is present or absent. As a plant-specific microtubule-dependent kinesin with a lower microtubule-affinity and a nucleotide-independent microtubule-binding ability, cotton GhKCH2 might be involved in the function of microtubules during the deposition of cellulose microfibrils in fibers or the formation of cell wall.

Sperm Injection into Maturing and Activated Porcine Oocytes

  • Kim, Bong-Ki;Lee, Yun-Jung;Cui, Xiang-Shun;Kim, Nam-Hyung
    • Proceedings of the KSAR Conference
    • /
    • 2001.03a
    • /
    • pp.41-41
    • /
    • 2001
  • Chromatin configuration and microtubule assembly were determined in porcine maturing and activated oocytes following intracytoplasmic sperm injection. Microtubule localization was confirmed using a mouse monoclonal antibody to $\alpha$-tubulin and detected using a fluorescent labeled goat anti-mouse secondary antibody. DNA was stained with propidium iodide. The image of microtubules and chromatin was captured using laser scanning confocal microscope. In germinal vesicle stage oocyte, sperm chromatin remained condensation and sperm derived microtubules were not observed at 8 to 12 h after sperm injection. At 24 h after injection, the sperm nucleus developed to the metaphase chromatin along the metaphase structure of female nucleus. In some metaphase I stage oocytes, sperm chromatin decondensed at 8 h to 12 h after injection, sperm aster was seen soon after sperm injection. At 24 h after sperm injection into metaphase I stage oocyte, male chromatin developed to the metaphase chromatin while female chromatin extruded first polar body and formed the metaphase chromatin. At 12 to 15 h after sperm injection into preactivated oocytes, condensed sperm nucleus was located in close proximity of female pronucleus. However, the condensed nucleus did not fuse with female pronucleus. In preactivated ocytes, injected sperm remained condensation, a few sperm organized small microtubular aster. Instead, maternal derived microtubules were organized near the female chromatin, which seem to move condensed male chromatin near to the female pronucleus. These results suggest that sperm nuclear decondensing activity and nucleation activity of centrosome during fertilization are cell cycle dependent. In absence of male functional centrosome, female origin centrosome takes over the role of microtubule nucleation for nuclear movement.

  • PDF

Fine Structure of the Spermatogenic Cells during the Spermiogenesis of Paradoxornis webbiana (붉은머리 오목눈이 (Paradoxornis webbiana)의 정자변태 과정 중 정자형성세포의 미세구조)

  • Lee, Jung-Hun;Hahm, Kyu-Hwang
    • Applied Microscopy
    • /
    • v.31 no.3
    • /
    • pp.245-256
    • /
    • 2001
  • The morphological characteristics of spermatogenic cells during the spermiogenesis of Paradoxornis webbiana were studied by transmission electron microscope. Spermiogenesis of P. webbiana was divided into ten phase. The chromatin granules became fibrous granules at the Golgi phase, gradually condensed at the cap phases, condensed as a stick at the acrosomal phase, and finally, a perfect nucleus was formed at the maturation phase. The formation of sperm tail began at the early Golgi phase, and completed at the late maturation phase. In particular, the dense materials existed in the sperm neck, which is wedged between the tip of segmented columns and the first mitochondria of the middle piece. The axone in the neck were surrounded by the dense materials. The axonema in spermatozoon contains a 9+2 arrangement of microtubules: 9 doublets, and 2 central single microtubules. Mitochondrial bundles of middle piece were composed of a pair of arms, which surrounded the axone of the middle piece by the $15^{\circ}$ angled-helical structure. The outer membrane of mitochondria were surrounded by microtubules in plasma membrane of the sperm. The undulating membrane had a helical structure, and the sperm plasma membrane was surrounded by undulating membrane.

  • PDF

Cytoskeletal changes during nuclear and cell division in the freshwater alga Zygnema cruciatum (Chlorophyta, Zygnematales)

  • Yoon, Min-Chul;Han, Jong-Won;Hwang, Mi-Sook;Kim, Gwang-Hoon
    • ALGAE
    • /
    • v.25 no.4
    • /
    • pp.197-204
    • /
    • 2010
  • Cytoskeletal changes were observed during cell division of the green alga Zygnema cruciatum using flourescein isothiocynate (FITC)-conjugated phallacidin for F-actin staining and FITC-anti-$\alpha$-tubulin for microtubule staining. Z. cruciatum was uninucleate with two star-shaped chloroplasts. Nuclear division and cell plate formation occurred prior to chloroplast division. Actin filaments appeared on the chromosome and nuclear surface during prophase, and the F-actin ring appeared as the cleavage furrow developed. FITC-phallacidin revealed that actin filaments were attached to the chromosomes during metaphase. The F-actin ring disappeared at late metaphase. At telophase, FITC-phallacidin staining of actin filaments disappeared. FITC-anti-$\alpha$-tubulin staining revealed that microtubules were arranged beneath the protoplasm during interphase and then localized on the nuclear region at prophase, and that the mitotic spindle was formed during metaphase. The microtubules appeared between dividing chloroplasts. The results indicate that a coordination of actin filaments and microtubules might be necessary for nuclear division and chromosome movement in Z. cruciatum.

A Survey of Plastid Crystals and Microtubules in Flowering Plants (꽃피는식물 색소체 내 결정구조와 미세소관의 발달양상 조사 연구)

  • Kim, In-Sun
    • Applied Microscopy
    • /
    • v.39 no.2
    • /
    • pp.73-80
    • /
    • 2009
  • The plastid inclusion has long been known to exist in leaves of numerous plant species, especially in those of flowering plants. Among the inclusions, crystalline bodies are the most frequently distinguished structures of the foliar plastids, however, microtubules and phytoferritins are also reported occasionally. The crystalline inclusions vary in shape, and are located either in the stroma or within intrathylakoidal spaces, whereas microtubules and phytoferritins are more uniform in shape and are formed in the stroma. In crystalline structures, the composing elements exhibit a lattice pattern and/or paralleled tubules that are either bounded by membranes or exist without membrane enclosing. Other types of inclusions have not been shown to be enclosed by any membranous structures. According to the current survey, the plastid inclusion, with the exception of phytoferritins, has been shown to exhibit a crystalline or tubular pattern, and has been reported in more than 56 species of various families. Their occurrence is not restricted to any photosynthetic pathway, but is found to be randomly distributed among C-3, C-4 and CAM species, without phylogenetic relationships. The progress in plastid inclusion research reveals more information about the function and complexity, but the need for characterizing the 3-D structure of the crystalline inclusions also has been acknowledged in previous studies. A 3-D characterization would utilize tilting and tomography of serial sections with appropriate image processing that would provide valuable information on the sub-structures of the crystalline inclusions. In fact, recent studies performed on 3-D reconstruction of the plastid inclusions revealed important information about their comprising elements. In this article, the crystals and microtubules that have been reported in various types of plastids have been reviewed, with special consideration given to their possible sub-cellular function within the plastids.

Comparative study on the Spermatogenesis of two kinds of Korean planarias, Dugesia japonica and Phagocata vivida (한국산 플라나리아 Dugesia japonica와 Phagocata vivida 두종 사이의 정자 형성에 관한 비교연구)

  • Chang, Nam-Sub
    • Applied Microscopy
    • /
    • v.22 no.2
    • /
    • pp.75-83
    • /
    • 1992
  • Comparative study on the spermatogenesis of two kinds of Korean planarias, Dugesia japonica and Phagocata vivida, were studied with light and electron microscope. Observation results were as follows. Except following details, fine structure and morphogenesis of the spermatogonia, primary spermatocyte, secondary spermatocyt spermatid and spermatozoon were consistant between the two species. The nucleus of primary spermatocyte of Dugesia japonica was surrounded with 36-38 microtubules, while that of Phagocata vivida with 40-42 microtubules. The C-shaped lamellar Golgi complex appeared in the spermatid cytoplasm of the former, while Straight-shaped lamellar Golgi complex in that of the latter. The four white spots were observed only in the nucleoplasm of matured spermatozoon in the latter, not in the former.

  • PDF