• 제목/요약/키워드: microstructure hardness

검색결과 1,339건 처리시간 0.028초

내부경화형 구상흑연주철 롤의 미세조직과 경도에 미치는 열처리의 영향 (Effect of Heat Treatment on the Microstructure and Hardness of Internally Hardened Ductile Cast Iron Roll)

  • 이상묵;김도훈;윤서현
    • 한국산업융합학회 논문집
    • /
    • 제27권1호
    • /
    • pp.1-7
    • /
    • 2024
  • This study was investigated the effect of heat treatment on the microstructure and hardness of internally hardened ductile cast iron roll. The following conclusions were obtained. Some of the graphite was decreased and a bainite was produced by heat treatment. It decreased due to the decomposition of some of the cementite precipitated in the as-cast by heat treatment, but there was no significant change when it reached a certain depth. Hardness increased due to formation of bainite by heat treatment. On the surface, the hardness decreased due to the decrease in the amount of transformation of cementite into bainite, but there was no change beyond a certain depth.

나노인덴테이션으로 측정한 Ti(C0.7N0.3)-WC-Ni 써멧 구성상의 경도 (Hardness of Constituent Phases in Ti(C0.7N0.3)-WC-Ni Cermets Measured by Nanoindentation)

  • 김성원;김대민;강신후;김형준;김형태
    • 한국세라믹학회지
    • /
    • 제46권1호
    • /
    • pp.116-121
    • /
    • 2009
  • The constituent phases in Ti($C_{0.7}N_{0.3}$)-xWC-20Ni (wt%, x=5, 15, 25) cermets were characterized using nanoindentation in conjunction with observation of microstructure. The microstructure of cermet is composed of hard phase and binder phase, which gave rise to a wide range of hardness distribution when nanoindentation was carried out on the polished surface of cermets. Because of the inhomogeneous nature of cermet microstructure, observation of indented surface was indispensable in order to separate the hardness of each constituent phase. The measured values of hardness using nanoindentation were ${\sim}14\;GPa$ for the binder phase and ${\sim}24$ to 28 GPa for the hard phase, of which nanoindentation hardness was decreased with the addition of WC into Ti($C_{0.7}N_{0.3}$)-Ni system. In addition, the nanoindentation hardness of Ni binder phase was much higher than reported Vickers hardness, which could result from confined deformation of binder phase due to the surrounding hard phase particles.

등온 열처리에 따른 중탄소 베이나이트강의 미세조직과 기계적 특성 (Effect of Isothermal Heat Treatment on the Microstructure and Mechanical Properties of Medium-Carbon Bainitic Steels)

  • 이지민;이상인;임현석;황병철
    • 한국재료학회지
    • /
    • 제28권9호
    • /
    • pp.522-527
    • /
    • 2018
  • This study investigates the effects of isothermal holding temperature and time on the microstructure, hardness and Charpy impact properties of medium-carbon bainitic steel specimens. Medium-carbon steel specimens with different bainitic microstructures are fabricated by varying the isothermal conditions and their microstructures are characterized using OM, SEM and EBSD analysis. Hardness and Charpy impact tests are also performed to examine the correlation of microstructure and mechanical properties. The microstructural analysis results reveal that granular bainite, bainitic ferrite, lath martensite and retained austenite form differently in the specimens. The volume fraction of granular bainite and bainitic ferrite increases as the isothermal holding temperature increases, which decreases the hardness of specimens isothermally heat-treated at $300^{\circ}C$ or higher. The specimens isothermally heat-treated at $250^{\circ}C$ exhibit the highest hardness due to the formation of lath martensite, irrespective of isothermal holding time. The Charpy impact test results indicate that increasing isothermal holding time improves the impact toughness because of the increase in volume fraction of granular bainite and bainitic ferrite, which have a relatively soft microstructure compared to lath martensite for specimens isothermally heat-treated at $250^{\circ}C$ and $300^{\circ}C$.

플라즈마/레이저 복합용사에 의한 $ZrO_2-8%Y_2O_3$ 코팅층의 미세구조 및 기계적 특성 (Microstructures and Mechanical Properties of $ZrO_2-8%Y_2O_3$ Coating Layer by Plasma/Laser Complex Spraying)

  • 김영식;오명석
    • 동력기계공학회지
    • /
    • 제4권4호
    • /
    • pp.48-53
    • /
    • 2000
  • This study was aimed at observing the influence of laser irradiation on a $ZrO_2-8%Y_2O_3$ ceramic coating layer fabricated by plasma spraying. The $ZrO_2-8%Y_2O_3$ ceramic powder was plasma sprayed onto SS400 carbon steel substrate and laser irradiated on the coating layer under various conditions of laser power and beam diameters. As to the as-sprayed specimen and laser-treated specimen, a hardness test and a microstructure analysis were performed. Hardness was measured by a microhardness tester; microstructure was observed by an optical microscope and a scanning electron microscope. The result was that the microstructure of the laser-irradiated coating layer was dense; porosities almost disappeared and hardness increased. It was also observed that microcracks occured in the laser-irradiated coating layer.

  • PDF

철계 복합 분말로 제조된 오버레이 용접층의 미세조직 및 특성 (Microstructure and Characterization of Overlay Welding Layer using Fe-based Composite Powders)

  • 민홍;이종재;이진규
    • 한국분말재료학회지
    • /
    • 제26권3호
    • /
    • pp.214-219
    • /
    • 2019
  • In this study, the microstructure and characterization of an overlay welding layer using Fe-based composite powders are reported. The effects of the number of passes and composition of powders on the microstructure and mechanical properties are investigated in detail. The welding wire and powders are deposited twice on a stainless-steel rod using a laser overlay welding process. The microstructure and structural characterization are performed by scanning electron microscopy and X-ray diffraction. The mechanical properties of the first and second overlay layers are analyzed through the micro-Vickers-hardness tester and abrasion wear tester. In the second overlay layer, the hardness and specific wear are approximately 840 Hv and $2.0{\times}10^{-5}mm^3/Nm$, respectively. It is suggested that the increase of the volume fractions of $(Cr,Fe)_7C_3$ and NbC phases in the second welding layer enhances the hardness and wear resistance.

Microstructure and Mechanical Properties of Cr-Mo Steels for Nuclear Industry Applications

  • Kim, Sung-Ho;Ryu, Woo-Seong;Kuk, Il-Hiun
    • Nuclear Engineering and Technology
    • /
    • 제31권6호
    • /
    • pp.561-571
    • /
    • 1999
  • Microstructure and mechanical properties of five Cr-Mo steels for nuclear industry applications have been investigated. Transmission electron microscopy, energy dispersive spectrometer, differential scanning calorimeter, hardness, tensile, and impact test were used to evaluate the Cr and W effect on the microstructure and mechanical properties. Microstructures of Cr-Mo steels after tempering are classified into three types : bainitic 2.25Cr-lMo steel, martensitic Mod.9Cr-lMo, HT9M, and HT9W steels, and dual phase HT9 steel. The majority of the precipitates were found to be M$_{23}$C$_{6}$ carbides. As minor phases, fine needle-like V(C,N), spherical NbC, fine needle-like Cr-rich Cr$_2$N, and Cr-rich M$_{7}$C$_3$were also found. Addition of 2wt.% W in Cr-Mo steels retarded the formation of subgrain and dissolution of Cr$_2$N precipitates. Hardness and ultimate tensile strength increased with increasing Cr content. Though Cr content of HT9W steel was lower than that of HT9 steel, the hardness of HT9W was higher due to the higher W content. W added HT9W steel had the highest ultimate tensile strength above $600^{\circ}C$. But impact toughness of W added steel (HT9W) and high Cr steel (HT9) was low.w.w.

  • PDF

고(<24%)Mn 플럭스코어드와이어를 사용한 다층 용접 시 초층 응고조직의 결정면방위에 따른 미세조직과 경도 (Microstructure and Hardness of 1st layer with Crystallographic Orientation of Solidification Structure in Multipass Weld using High Mn-Ni Flux Cored Wire)

  • 한일욱;엄정복;윤중길;이봉근;강정윤
    • Journal of Welding and Joining
    • /
    • 제34권5호
    • /
    • pp.77-82
    • /
    • 2016
  • In this study, Microstructure and hardness of 1st layer with crystallographic orientation were investigated about solidification structure in multipass weld using high Mn-Ni flux cored wire. Microstructure of solidification consisted of austenite matrix and a little ${\varepsilon}-phase$ in grain boundaries. Orientation of grains was usually (001), (101), (111). According to crystallographic orientation, morphology of primary dendrite was different. The depletion of Fe and the segregation of Mn, C, Ni, Si, Cu, Cr, O were found along the grain boundaries. The area of segregation was wide with an order of (001), (101), (111) grains. And hardness of grains with crystallographic orientation increased with an order of (001), (101), (111) grains because of the segregation along dendrite boundary.

PTA법에 의한 스텔라이트 12합금 육성층의 미세조직 및 경도에 미치는 시효처리의 영향 (The effect of aging on the Microstructure and Hardness of Stellite 12 alloy overlayer by PTA process)

  • 정병호;김무길;이성열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권1호
    • /
    • pp.68-75
    • /
    • 2002
  • Stellite 12 alloy-powders were overlaid on 410 stainless steel valve seat by plasma transferred arc(PTA)process. Variation of microstructure and hardness of overlaid deposit with aging time at $750^{\circ}C$ was investigated. The deposit showed hypoeutectic microstructure, which was consisting of primary cobalt dendrite and networked $M_{7}C_{3}$type eutectic carbides. After aging new M_{23}C_{6}$ carbide was formed by the partial decomposition of $M_7C_3$ type eutectic carbides and finely dispersed $M_{23}C_6$ type carbides were also precipitated in the matrix. Hardness of the deposit was increased with increase of aging time at $750^{\circ}C$ and showed maximum value at 35hours. After showing maximum value, it was fallen down again at 70hours because of overaging. The increase of hardness in aging is ascribed to the formation of new stable $M_{23}C_6$ type carbide by the partial decomposition of $M_7C_3$ type eutectic carbides and also precipitation of finely dispersed $M_{23}C_6$ carbides in matrix.

Effects of Tungsten Addition on Tensile Properties of a Refractory Nb-l8Si-l0Ti-l0Mo-χW (χ=0, 5, 10 and 15 mot.%) In-situ Composites at 1670 K

  • 김진학;Tatsuo Tabaru;Hisatoshi Hirai
    • 소성∙가공
    • /
    • 제8권3호
    • /
    • pp.233-233
    • /
    • 1999
  • To investigate the effect of tungsten addition on mechanical properties, we prepared refractory (62χ)Nb-18Si-l00Mo-l0Ti-χW (χ=0, 5, 10 and 15 mol.%) in-situ composites by the conventional arc-casting technique, and then explored the microstructure, hardness and elastic modulus at ambient temperature and tensile properties at 1670 K. The microstructure consists of relatively fine (Nb, Mo, W, Ti)/sub 5/Si₃, silicide and a Nb solid solution matrix, and the fine eutectic microstructure becomes predominant at a Si content of around 18 mol.%. The hardness of (Nb, Mo, W, Ti(/sub 5/Si₃, silicide in a W-free sample is 1680 GPa, and goes up to 1980 GPa in a W 15 mol.% sample. The hardness, however, of Nb solid solution does not exhibit a remarkable difference when the nominal W content is increased. The elastic modulus shows a similar tendency to the hardness. The optimum tensile properties of the composites investigated are achieved at W 5 mol.% sample, which exhibits a relatively good ultimate strength of 230 MPa and an excellent balance of yield strength of 215 MPa, and an elongation of 3.7%. The SEM fractography generally indicates a ductile fracture in the W-free sample, and a cleavage rupture in W-impregnated ones.

Ni 함유 NICI(Nodular Indefinite Chilled Iron)의 미세조직과 기계적성질에 관한 연구 (The Study on the Microstructure and Mechanical Properties of the Nodular Indefinite Chilled Iron Containing Ni)

  • 백응률;오석중
    • 한국주조공학회지
    • /
    • 제26권4호
    • /
    • pp.180-183
    • /
    • 2006
  • NICI재의 미세조직 및 기계적 성질에 미치는 Ni 첨가원소의 영향을 연구하였다. 선재공장의 열간압연롤재로서의 NICI재는 내열 피로크랙성, 경도값, 인장성질, 내마모성이 매우 중요하다. 주방상태에서 4% Ni 첨가로 주요 기지상인 퍼얼라이트상이 베이나이트상으로 변화되었다. 베이나이트상을 주요 기지상으로 가지는 4% Ni 첨가 NICl재는 퍼얼라이트상을 주요 기지상으로 가지는 통상의 NICI재에 비해서 경도값(HRC 48) 및 인장강도값($72\;kg/mm^2$)이 우수하였으며, 이는 선재압연롤 재료로서 우수한 성능을 발휘할 수 있을 것으로 예측된다.