• 제목/요약/키워드: microstructure hardness

검색결과 1,339건 처리시간 0.02초

다축대각단조(MADF) 가공한 구리의 기계적 성질 (Mechanical Properties of OFC Copper Fabricated by Multi-Axial Diagonal Forging (MADF))

  • 권상철;김순태;김다빈;이재근;서승재;윤태식;정효태
    • 소성∙가공
    • /
    • 제27권4호
    • /
    • pp.250-256
    • /
    • 2018
  • Oxygen-free copper (OFC) was prepared as a 90 mm cube and then processed with Multi-Axial Diagonal Forging - Initialization of Prior manufacturing History (MADF). The MADF process has been newly developed as a severe plastic deformation method. The MADF process consists of upset forging with a thickness reduction of 30% and diagonal forging with a diagonal angle of $135^{\circ}$. 1 cycle process consists of a 12 passes forging process. In order to analyze the characteristic changes according to the number of iterations, 1, 2, and 3 cycles of the MADF process were performed. The OFC specimens were MADF processed without surface cracks up to 3 cycles. The microstructure, hardness and tensile test of processed materials were analyzed to study the change of material properties according to the amount of MADF process. The results showed that the MADF process effectively refined the microstructure and increased the strength of OFC. In the case of specimens processed for more than 2 cycles, the grains of all measurement regions were refined to be less than $7{\mu}m$ of grain size. The 1 cycle MADF processed OFC showed the highest mechanical properties with the hardness of 132 HV and tensile strength of 395 MPa. Hardness and strength seemed to be saturated when processed over 2 cycles.

Cu-Si 삽입금속을 이용한 DP강의 MIG 아크 브레이징 접합부의 미세조직과 기계적 성질 (Microstructure and Mechanical Properties of Gas Metal Arc Brazed Joint of DP Steel with Cu-Si Filler Metal)

  • 조욱제;윤태진;곽승윤;이재형;강정윤
    • Journal of Welding and Joining
    • /
    • 제34권5호
    • /
    • pp.70-76
    • /
    • 2016
  • In this study, Microstructure and tensile properties in arc brazed joints of 1000MPa grade DP steel using Cu-Si insert metal were investigated. The fusion zone was composed of Cu phase which solidified a little Fe and Si. The former phase formed due to dilute the edge of base material by arc, although Fe was not solid solution in Cu at the room temperature. Cu3Si particles formed by crystallization at $1100^{\circ}C$ during faster cooling. After the tensile shear test, there are no differences between the brazed joint efficiencies. The maximum joint efficient was about 37% compared to strength of base metal. It is better than that of arc brazed joint of DP steel using Cu-Sn filler metal. Fracture position of all brazing conditions was in the fusion zone. Crack initiation occurred at three junction point which was a stress singularity point of upper sheet, lower sheet and the fusion zone. And then crack propagated across the fusion zone. The reason why the fracture occurred at fusion zone was that the hardness of fusion zone was lower than that of base material and heat affected zone. The correlation among maximum load and hardness of fusion zone and EST at fractured position was $R^2=0.9338$. Therefore, this means that hardness and EST can have great impact on maximum load.

항자력과 자기포화도에 의한 WC-8%Co 초경합금의 기계적 성질 평가 (The Evaluation of Mechanical Property of WC-8%Co Alloys by Coercive Force and Magnetic Saturation)

  • 안동길
    • 비파괴검사학회지
    • /
    • 제20권5호
    • /
    • pp.438-444
    • /
    • 2000
  • WC-Co 초경합금의 항자력과 자기포화도를 평가하여 합금조직과 이에 따른 기계적 성질의 예측에 관해 연구하였다. WC 입경이 다르고 탄소함량 및 소결온도가 다른 WC-8%-Co 초경합금을 분말 야금법에 의해 제조하였다. 항자력과 자기포화도와 같은 WC-Co 합금의 자기적 특성은 합금조성 및 조직에 크게 의존하였다. 미소한 합금탄소량의 변화와 WC 입도의 차이에 의해서도 WC-Co 합금의 자기적 특성과 경도 및 항절력이 크게 변화하였다. WC 입도가 미세할수록 소결합금의 항자력과 경도는 증가하였고, 항자력은 경도의 증가와 비례하였다. WC-8%Co 합금의 화학 양론적 조성 아래로 카본함량이 감소하면 자기포화도와 항절력이 떨어지고 $\eta$상의 체적률도 꾸준히 증가하였다. WC-Co 합금에 있어서 자기포화도는 항자력과 반비례하였다.

  • PDF

ESR한 M2강의 열처리에 따른 미세조직 및 물성 변화 (Variation of Microstructure and Property of the Electro-slag Remelted M2 Steel with Heat Treatment Conditions)

  • 이기종;김문현;이정근;주대헌;김명호
    • 한국주조공학회지
    • /
    • 제22권6호
    • /
    • pp.281-287
    • /
    • 2002
  • In order to investigate the variation of microstructure and property of the Electro-slag Remelted M2 steel, microstructure observation, hardness, and bending test were performed by using optical microscope. SEM/EDS, rockwell hardness tester, charpy impact tester and bending tester, respectively. It was revealed that the number of inclusions and content of gas elements(S, O, N) in M2 steel fabricated by ESR process decreased markedly compared to those of AIM. It seems to be due to refining effect of ESR process. The volume fraction of carbides in quenched and tempered specimens after austenitizing at 1150$^{\circ}C$ and 1240$^{\circ}C$ was measured. The volume fraction of grain boundary carbides were found to be similar for both specimens. However, The volume fraction of carbides in grain decreased with an increase of austenitizing temperature. When specimen was austenitized at 1150$^{\circ}C$, grain boundary carbides showed needle like morphology. But, the carbides were broken with an increase of austenitizing temperature. The specimen austenitized at 1240$^{\circ}C$ showed higher hardness and lower bending strength compared to that of 1150$^{\circ}C$. As expected, toughness increased with sub-zero quenching treatment.

Microstructure and Tensile Properties of SS400 Carbon Steel and SUS430 Stainless Steel Butt Joint by Gas Metal Arc Welding

  • Poonnayom, Pramote;Chantasri, Sakchai;Kaewwichit, Jesada;Roybang, Waraporn;Kimapong, Kittipong
    • International Journal of Advanced Culture Technology
    • /
    • 제3권1호
    • /
    • pp.61-67
    • /
    • 2015
  • The application of SS400 carbon steel and AISI430 ferritic stainless steel joint has been increased in industries because of the advantage of both metals was able to increase the service lifetime of the important structures. Therefore, a fusion welding process that could produce a sound weld and good joint properties should be optimized. This research is aimed to weld a butt joint of SS400 carbon steel and AISI430 ferritic stainless steel using Gas Metal Arc Welding (GMAW) welding process and to study the effects of welding parameters on joint properties. The experimental results were concluded as follows. The optimized welding parameter that produced the tensile strength of 448 MPa was the welding current of 110A, the welding speed of 400 mm/min and the mixed gas of $80%Ar+20%CO_2$. Increase of the welding current affected to increase and decrease the tensile strength of the joint, respectively. Lower welding current produced the incomplete bonding of the metals and indicated the low tensile strength. Microstructure investigation of the welded joint showed a columnar grain in the weld metal and a coarse grain in the heat affected zone (HAZ). The unknown hard precipitated phases were also found at the grain boundaries of the weld metal and HAZ. The hardness profile did not show the difference of the hardness on the joint that was welded by various welding currents but the hardness of the weld metal was higher than that of the other location.

Microstructure Refinement and Strengthening Mechanisms of a 9Cr Oxide Dispersion Strengthened Steel by Zirconium Addition

  • Xu, Haijian;Lu, Zheng;Wang, Dongmei;Liu, Chunming
    • Nuclear Engineering and Technology
    • /
    • 제49권1호
    • /
    • pp.178-188
    • /
    • 2017
  • To study the effects of zirconium (Zr) addition on the microstructure, hardness and the tensile properties of oxide dispersion strengthened (ODS) ferritic-martensitic steels, two kinds of 9Cr-ODS ferritic-martensitic steels with nominal compositions (wt.%) of $Fe-9Cr-2W-0.3Y_2O_3$ and $Fe-9Cr-2W-0.3Zr-0.3Y_2O_3$ were fabricated by the mechanical alloying (MA) of premixed powders and then consolidated by hot isostatic pressing (HIP) techniques. The experimental results showed that the average grain size decreases with Zr addition. The trigonal ${\delta}$-phase $Y_4Zr_3O_{12}$ oxides and body-centered cubic $Y_2O_3$ oxides are formed in the 9Cr-Zr-ODS steel and 9Cr non-Zr ODS steel, respectively, and the average size of $Y_4Zr_3O_{12}$ particles is much smaller than that of $Y_2O_3$. The dispersion morphology of the oxide particles in 9Cr-Zr-ODS steel is significantly improved and the number density is $1.1{\times}10^{23}/m^3$ with Zr addition. The 9Cr-Zr-ODS steel shows much higher tensile ductility, ultimate tensile strength and Vickers hardness at the same time.

다축대각단조(MADF) Ver.1 및 Ver.2 공정으로 가공한 IF Steel의 미세조직 및 기계적 성질에 대한 연구 (A Study on Microstructure and Mechanical Properties of IF Steel Cube Fabricated by Multi-Axial Diagonal Forging Ver.1 and Ver.2 Processes)

  • 정도헌;조유연;권상철;김순태;이성;최시훈;정효태
    • 소성∙가공
    • /
    • 제30권6호
    • /
    • pp.306-310
    • /
    • 2021
  • In this study, IF steel, which has a body-centered cubic (BCC) crystal structure, was fabricated as a 25 mm-long cube, and then processed for one cycle without intermediate heat treatment by applying MADF Ver.1 and Ver.2 processes. MADF processing was performed with graphite lubrication for each pass at room temperature. The development of the microstructure and texture was analyzed and compared by the location of the specimen using EBSD measurements of the IF steel. Vickers hardness test and miniature tensile test were also performed to analyze the mechanical properties. The coarse grain size of 742.6 ㎛ of the as-received IF steel was refined to a grain size of 53.0 ㎛ after one cycle of MADF Ver.1 processing and 27.0 ㎛ after MADF Ver.2 processing. Vicker's hardness of the as-received IF steel at 94 Hv was increased to 185.6 Hv and 191.2 Hv after one cycle of MADF Ver.1 and Ver.2 processing, respectively.

Atmospheric plasma spray 공정으로 제조된 Y2O3 코팅층의 미세조직 및 기계적 특성에 미치는 분사 각도의 영향 (Effect of Spray Angle the on Microstructure and Mechanical Properties of Y2O3 Coating Layer Manufactured by Atmospheric Plasma Spray Process)

  • 황유진;김경욱;이호영;권식철;이기안
    • 한국분말재료학회지
    • /
    • 제28권4호
    • /
    • pp.310-316
    • /
    • 2021
  • The effects of different spray angles (90°, 85°, 80°) on the microstructure and mechanical properties of a Y2O3 coating layer prepared using the atmospheric plasma spray (APS) process were studied. The powders employed in this study had a spherical shape and included a cubic Y2O3 phase. The APS coating layer exhibited the same phase as the powders. Thickness values of the coating layers were 90°: 203.7 ± 8.5 ㎛, 85°: 196.4 ± 9.6 ㎛, and 80°: 208.8 ± 10.2 ㎛, and it was confirmed that the effect of the spray angle on the thickness was insignificant. The porosities were measured as 90°: 3.9 ± 0.85%, 85°: 11.4 ± 2.3%, and 80°: 12.7 ± 0.5%, and the surface roughness values were 90°: 5.9 ± 0.3 ㎛, 85°: 8.5 ± 1.1 ㎛, and 80°: 8.5 ± 0.4 ㎛. As the spray angle decreased, the porosity increased, but the surface roughness did not show a significant difference. Vickers hardness measurements revealed values of 90°: 369.2 ± 22.3, 85°: 315.8 ± 31.4, and 80°: 267.1 ± 45.1 HV. It was found that under the condition of a 90° angle with the lowest porosity exhibited the best hardness value. Based on the aforementioned results, an improved method for the APS Y2O3 coating layer was also discussed.

냉간압연접합된 층상 AA6061/AA5052/AA6061/AA5052 알루미늄합금판재의 미세조직 및 기계적 성질 (Microstructure and Mechanical Properties of Cold Roll-Bonded Layered AA6061/AA5052/AA6061/AA5052 Aluminum Alloy Sheet)

  • 조상현;박보배;이성희
    • 한국재료학회지
    • /
    • 제32권3호
    • /
    • pp.161-167
    • /
    • 2022
  • A cold roll-bonding process is applied to fabricate an AA6061/AA5052/AA6061/AA5052 layered sheet. Two AA6061 and one AA5052 sheets of 2mm thickness, 40mm width and 300mm length are alternately stacked, then reduced to a thickness of 2.0 mm by multi-pass cold rolling after surface treatment such as degreasing and wire brushing. The rolling is performed at ambient temperature without lubricant using a 2-high mill with a roll diameter of 400 mm at a rolling speed of 6.0 m/sec. The roll-bonded AA6061/AA5052/AA6061/AA5052 layered sheet is then hardened by natural aging (T4) and artificial aging (T6) treatments. The microstructure of the as-roll bonded and the age-hardened Al sheets was revealed by SEM observation; the mechanical properties were investigated by tensile testing and hardness testing. After T4 and T6 aging treatment, the specimens had a recrystallization structure consisting of coarse equiaxed grains in both AA5052 and AA6061 regions. The as-roll-bonded specimen showed a clad structure in which the hardness of AA5052 regions was higher than that of AA6061 regions. However, after T4 and T6 aging treatment, specimens exhibited different structures, with hardness of AA6061 regions higher than that of AA5052 regions. Strengths of T6 and T4 age-treated specimens were found to increase by 1.55 and 1.36 times, respectively, compared to the value of the starting material.

인슐레이터용 알루미나의 치밀화에 미치는 MgO의 함량과 소결 온도의 영향 (Effects of the Content of MgO Additive and Sintering Temperature on the Densification of Alumina Insulator)

  • 김리주;정한결;손예지;고상기;홍현선
    • 한국분말재료학회지
    • /
    • 제30권3호
    • /
    • pp.249-254
    • /
    • 2023
  • The influence of MgO addition on the densification and microstructure of alumina (Al2O3) was studied. Compacted alumina specimens were manufactured using ball-milling and one-directional pressing followed by sintering at temperatures below 1700℃. Relative density, shrinkage, hardness, and microstructure were investigated using analytical tools such as FE-SEM, EDS, and XRD. When the MgO was added up to 5.0 wt% and sintered at 1500℃ and 1600℃, the relative density exhibited an average value of 97% or more at both temperatures. The maximum density of 99.2% was with the addition of 0.5 wt% MgO at 1500℃. Meanwhile, the specimens showed significantly lower density values when sintered at 1400℃ than at 1500℃ and 1600℃ owing to the relatively low sintering temperature. The hardness and shrinkage data also showed a similar trend in the change in density, implying that the addition of approximately 0.5 wt% MgO can promote the densification of Al2O3. Studying the microstructure confirmed the uniformity of the sintered alumina. These results can be used as basic compositional data for the development of MgO-containing alumina as high-dielectric insulators.