DOI QR코드

DOI QR Code

Effect of Spray Angle the on Microstructure and Mechanical Properties of Y2O3 Coating Layer Manufactured by Atmospheric Plasma Spray Process

Atmospheric plasma spray 공정으로 제조된 Y2O3 코팅층의 미세조직 및 기계적 특성에 미치는 분사 각도의 영향

  • 황유진 (인하대학교 신소재공학과) ;
  • 김경욱 (인하대학교 신소재공학과) ;
  • 이호영 ((주)이에스티) ;
  • 권식철 (베델원(주) 표면처리센터) ;
  • 이기안 (인하대학교 신소재공학과)
  • Received : 2021.07.12
  • Accepted : 2021.07.30
  • Published : 2021.08.28

Abstract

The effects of different spray angles (90°, 85°, 80°) on the microstructure and mechanical properties of a Y2O3 coating layer prepared using the atmospheric plasma spray (APS) process were studied. The powders employed in this study had a spherical shape and included a cubic Y2O3 phase. The APS coating layer exhibited the same phase as the powders. Thickness values of the coating layers were 90°: 203.7 ± 8.5 ㎛, 85°: 196.4 ± 9.6 ㎛, and 80°: 208.8 ± 10.2 ㎛, and it was confirmed that the effect of the spray angle on the thickness was insignificant. The porosities were measured as 90°: 3.9 ± 0.85%, 85°: 11.4 ± 2.3%, and 80°: 12.7 ± 0.5%, and the surface roughness values were 90°: 5.9 ± 0.3 ㎛, 85°: 8.5 ± 1.1 ㎛, and 80°: 8.5 ± 0.4 ㎛. As the spray angle decreased, the porosity increased, but the surface roughness did not show a significant difference. Vickers hardness measurements revealed values of 90°: 369.2 ± 22.3, 85°: 315.8 ± 31.4, and 80°: 267.1 ± 45.1 HV. It was found that under the condition of a 90° angle with the lowest porosity exhibited the best hardness value. Based on the aforementioned results, an improved method for the APS Y2O3 coating layer was also discussed.

Keywords

Acknowledgement

본 연구는 산업통상자원부(KIAT)의 차세대 지능형 반도체 기술 개발(20010610) 과제의 지원을 받아 연구되었으며 이에 감사드립니다.

References

  1. J. Kitamura, H. Ibe, F. Yuasa and H. Mizuno: J. Therm. Spray Technol., 17 (2008) 878. https://doi.org/10.1007/s11666-008-9285-y
  2. R. Banal, T. Kimura and T. Goto: Mater. Trans., 46 (2005) 2114. https://doi.org/10.2320/matertrans.46.2114
  3. D. M. Kim, S. M. Lee, I. K. Kim, B. K. Jang, D. S. Lim and Y. S. Oh: J. Ceram. Soc. Japan, 120 (2012) 539. https://doi.org/10.2109/jcersj2.120.539
  4. M. S. Kim, S. M. So, H. S. Kim, S. H. Park, Y. J. Ham, M. S. Jeon and K. H. Kim: J. Korean Cryst. Growth Cryst. Technol., 29 (2019) 359. https://doi.org/10.6111/JKCGCT.2019.29.6.359
  5. J. Iwasawa, R. Nishimizu, M. Tokita, M. Kiyohara and K. Uematsu: J. Am. Ceram. Soc., 90 (2007) 2327. https://doi.org/10.1111/j.1551-2916.2007.01738.x
  6. P. Fauchais, M. Vardelle and S. Goutier: J. Thermal Spray Technol., 24 (2015) 1120. https://doi.org/10.1007/s11666-015-0286-3
  7. R. Singh, S. A. Tiwari and S. K. Mishra: J. Mater. Eng. Perform., 21 (2012) 1539. https://doi.org/10.1007/s11665-011-0051-9
  8. P. Mechnich and W. Braue: J. Eur. Ceram. Soc., 33 (2013) 2645. https://doi.org/10.1016/j.jeurceramsoc.2013.03.034
  9. J. B. Song, J. T. Kim, S. G. Oh and J. Y. Yun: Coatings, 9 (2019) 102. https://doi.org/10.3390/coatings9020102
  10. T. K. Lin, W. K. Wang, S. Y. Huang, C. T. Tasi and D. S. Wuu: Nanomaterials, 7 (2017) 183. https://doi.org/10.3390/nano7070183
  11. P. Mechnich and W. Braue: J. Eur. Ceram. Soc., 33 (2013) 2645. https://doi.org/10.1016/j.jeurceramsoc.2013.03.034
  12. V. Gourlaouen, G. Schnedecker, M. Boncoeur, A. M. Lejus and R. Collongues: J. Mater. Sci., 29 (1994) 6434. https://doi.org/10.1007/BF00354000
  13. H. S. An, H. K. Kim and C. H. Lee: J. Weld. Join., 15 (1997) 1.
  14. K. Sabiruddin, J. Joardar and P. P. Bandyopadhyay: Surf. Coat. Technol., 204 (2010) 3248. https://doi.org/10.1016/j.surfcoat.2010.03.026
  15. V. Gourlaouen, G. Schnedecker, A. M. Lejus, M. Boncoeur and R. Collongues: Mater. Res. Bull., 28 (1993) 415. https://doi.org/10.1016/0025-5408(93)90123-U
  16. J. Kitamura, Z. Tang, H. Mizuno, K. Sato and A. Burgess: J. Therm. Spray Technol., 20 (2011) 170. https://doi.org/10.1007/s11666-010-9585-x
  17. C. W. Kang and H. W. Ng: J. Therm. Spray Technol, 15 (2006) 118. https://doi.org/10.1361/105996306X92686
  18. R. C. Tucker Jr.: Therm. Spray Technol., 5 (2013) 76. https://doi.org/10.31399/asm.hb.v05a.a0005725
  19. B. H. Kim and D. S. Suhr: Korean J. Mater. Res., 8 (1998) 505.
  20. H. Guo, S. Kuroda and H. Murakami: J. Am. Ceram. Soc., 89 (2006) 1432. https://doi.org/10.1111/j.1551-2916.2005.00912.x
  21. G. Montavon, S. Sampath, C. C. Berndt, H. Herman and C. Coddet: Surf. Coat. Technol., 91 (1997) 107. https://doi.org/10.1016/S0257-8972(96)03137-4
  22. S. Bose: High Temperature Coatings, Butterworth-Heinemann, Oxford (2007) 155.
  23. H. Grunling and W. Mannsmann: J. Phys. IV, 3 (1993) C7-903.
  24. S . H. Leigh and C. C. Berndt: Surf. Coat. Tech., 89 (1997) 213. https://doi.org/10.1016/S0257-8972(96)02897-6
  25. A. Hasui, S. Kitahara and T. Fukushima: Trans. Nat. Res. Inst. Metals, 12 (1970) 9.
  26. S. Dallaire, B. Arsenault and A. Desantis: Surf. Coat. Tech., 53 (1992) 129. https://doi.org/10.1016/0257-8972(92)90114-P