DOI QR코드

DOI QR Code

Atmospheric plasma spray 공정으로 제조된 Y2O3 코팅층의 미세조직 및 기계적 특성에 미치는 분사 각도의 영향

Effect of Spray Angle the on Microstructure and Mechanical Properties of Y2O3 Coating Layer Manufactured by Atmospheric Plasma Spray Process

  • 황유진 (인하대학교 신소재공학과) ;
  • 김경욱 (인하대학교 신소재공학과) ;
  • 이호영 ((주)이에스티) ;
  • 권식철 (베델원(주) 표면처리센터) ;
  • 이기안 (인하대학교 신소재공학과)
  • 투고 : 2021.07.12
  • 심사 : 2021.07.30
  • 발행 : 2021.08.28

초록

The effects of different spray angles (90°, 85°, 80°) on the microstructure and mechanical properties of a Y2O3 coating layer prepared using the atmospheric plasma spray (APS) process were studied. The powders employed in this study had a spherical shape and included a cubic Y2O3 phase. The APS coating layer exhibited the same phase as the powders. Thickness values of the coating layers were 90°: 203.7 ± 8.5 ㎛, 85°: 196.4 ± 9.6 ㎛, and 80°: 208.8 ± 10.2 ㎛, and it was confirmed that the effect of the spray angle on the thickness was insignificant. The porosities were measured as 90°: 3.9 ± 0.85%, 85°: 11.4 ± 2.3%, and 80°: 12.7 ± 0.5%, and the surface roughness values were 90°: 5.9 ± 0.3 ㎛, 85°: 8.5 ± 1.1 ㎛, and 80°: 8.5 ± 0.4 ㎛. As the spray angle decreased, the porosity increased, but the surface roughness did not show a significant difference. Vickers hardness measurements revealed values of 90°: 369.2 ± 22.3, 85°: 315.8 ± 31.4, and 80°: 267.1 ± 45.1 HV. It was found that under the condition of a 90° angle with the lowest porosity exhibited the best hardness value. Based on the aforementioned results, an improved method for the APS Y2O3 coating layer was also discussed.

키워드

과제정보

본 연구는 산업통상자원부(KIAT)의 차세대 지능형 반도체 기술 개발(20010610) 과제의 지원을 받아 연구되었으며 이에 감사드립니다.

참고문헌

  1. J. Kitamura, H. Ibe, F. Yuasa and H. Mizuno: J. Therm. Spray Technol., 17 (2008) 878. https://doi.org/10.1007/s11666-008-9285-y
  2. R. Banal, T. Kimura and T. Goto: Mater. Trans., 46 (2005) 2114. https://doi.org/10.2320/matertrans.46.2114
  3. D. M. Kim, S. M. Lee, I. K. Kim, B. K. Jang, D. S. Lim and Y. S. Oh: J. Ceram. Soc. Japan, 120 (2012) 539. https://doi.org/10.2109/jcersj2.120.539
  4. M. S. Kim, S. M. So, H. S. Kim, S. H. Park, Y. J. Ham, M. S. Jeon and K. H. Kim: J. Korean Cryst. Growth Cryst. Technol., 29 (2019) 359. https://doi.org/10.6111/JKCGCT.2019.29.6.359
  5. J. Iwasawa, R. Nishimizu, M. Tokita, M. Kiyohara and K. Uematsu: J. Am. Ceram. Soc., 90 (2007) 2327. https://doi.org/10.1111/j.1551-2916.2007.01738.x
  6. P. Fauchais, M. Vardelle and S. Goutier: J. Thermal Spray Technol., 24 (2015) 1120. https://doi.org/10.1007/s11666-015-0286-3
  7. R. Singh, S. A. Tiwari and S. K. Mishra: J. Mater. Eng. Perform., 21 (2012) 1539. https://doi.org/10.1007/s11665-011-0051-9
  8. P. Mechnich and W. Braue: J. Eur. Ceram. Soc., 33 (2013) 2645. https://doi.org/10.1016/j.jeurceramsoc.2013.03.034
  9. J. B. Song, J. T. Kim, S. G. Oh and J. Y. Yun: Coatings, 9 (2019) 102. https://doi.org/10.3390/coatings9020102
  10. T. K. Lin, W. K. Wang, S. Y. Huang, C. T. Tasi and D. S. Wuu: Nanomaterials, 7 (2017) 183. https://doi.org/10.3390/nano7070183
  11. P. Mechnich and W. Braue: J. Eur. Ceram. Soc., 33 (2013) 2645. https://doi.org/10.1016/j.jeurceramsoc.2013.03.034
  12. V. Gourlaouen, G. Schnedecker, M. Boncoeur, A. M. Lejus and R. Collongues: J. Mater. Sci., 29 (1994) 6434. https://doi.org/10.1007/BF00354000
  13. H. S. An, H. K. Kim and C. H. Lee: J. Weld. Join., 15 (1997) 1.
  14. K. Sabiruddin, J. Joardar and P. P. Bandyopadhyay: Surf. Coat. Technol., 204 (2010) 3248. https://doi.org/10.1016/j.surfcoat.2010.03.026
  15. V. Gourlaouen, G. Schnedecker, A. M. Lejus, M. Boncoeur and R. Collongues: Mater. Res. Bull., 28 (1993) 415. https://doi.org/10.1016/0025-5408(93)90123-U
  16. J. Kitamura, Z. Tang, H. Mizuno, K. Sato and A. Burgess: J. Therm. Spray Technol., 20 (2011) 170. https://doi.org/10.1007/s11666-010-9585-x
  17. C. W. Kang and H. W. Ng: J. Therm. Spray Technol, 15 (2006) 118. https://doi.org/10.1361/105996306X92686
  18. R. C. Tucker Jr.: Therm. Spray Technol., 5 (2013) 76. https://doi.org/10.31399/asm.hb.v05a.a0005725
  19. B. H. Kim and D. S. Suhr: Korean J. Mater. Res., 8 (1998) 505.
  20. H. Guo, S. Kuroda and H. Murakami: J. Am. Ceram. Soc., 89 (2006) 1432. https://doi.org/10.1111/j.1551-2916.2005.00912.x
  21. G. Montavon, S. Sampath, C. C. Berndt, H. Herman and C. Coddet: Surf. Coat. Technol., 91 (1997) 107. https://doi.org/10.1016/S0257-8972(96)03137-4
  22. S. Bose: High Temperature Coatings, Butterworth-Heinemann, Oxford (2007) 155.
  23. H. Grunling and W. Mannsmann: J. Phys. IV, 3 (1993) C7-903.
  24. S . H. Leigh and C. C. Berndt: Surf. Coat. Tech., 89 (1997) 213. https://doi.org/10.1016/S0257-8972(96)02897-6
  25. A. Hasui, S. Kitahara and T. Fukushima: Trans. Nat. Res. Inst. Metals, 12 (1970) 9.
  26. S. Dallaire, B. Arsenault and A. Desantis: Surf. Coat. Tech., 53 (1992) 129. https://doi.org/10.1016/0257-8972(92)90114-P