• 제목/요약/키워드: microstructure hardness

검색결과 1,339건 처리시간 0.028초

급속승온공정을 이용한 사출성헝된 Fe 소결체의 미세조직 및 소결거동 (Microstructure and Sintering Behavior of Injection Molded Fe Sintered Body Using Rapid Thermal Heating Process)

  • 김기현;한재길;유지훈;최철진;이병택
    • 한국분말재료학회지
    • /
    • 제11권6호
    • /
    • pp.528-534
    • /
    • 2004
  • Using the nano Fe powders having 50 nm in diameter, Fe compact bodies were fabricated by injec-tion molding process. The relationship between microstructure and material properties depending on the volume ratio of powder/binder and sintering temperature were characterized by SEM, TEM techniques. In the compact body with the volume percentage ratio of 45(Fe powder) : 55(binder), which was sintered at $700^{\circ}C,$ the relative density was about $97{\%},$ and the values of volume shrinkage and hardness were about $66.3{\%}$ and 242.0 Hv, respec-tively. Using the composition of 50(Fe powder) : 50(binder) and sintered at $700^{\circ}C,$ the values of relative density, volume shrinkage and hardness of Fe sintered bodies were $73.3{\%},\;47.6{\%}$ and 152.8 Hv, respectively. They showed brittle fracture mode due to the porous and fine microstructure.

9Cr-1Mo 내열강의 미세조직 및 기계적 성질에 미치는 원심주조 후 단조 조건의 영향 (Effect of Forging Condition on the Microstructure and Mechanical Properties of Centrifugal Casted 9Cr-1Mo Heat-Resisting Steel)

  • 이상명;김윤규;최한글;이정규;조영관;박영태;강창룡
    • 동력기계공학회지
    • /
    • 제14권2호
    • /
    • pp.84-89
    • /
    • 2010
  • The effect of forging condition on the microstructure and mechanical properties of 9Cr-1Mo heat-resisting steel was investigated. Microstructure of centrifugal casted 9Cr-1Mo heat resisting steel and forged heat resisting steel are consisted of martensite. With the increase of forging ratio, tensile strength and hardness increased, while elongation and impact value decreased. By increasing of forging starting temperature and finishing temperature, tensile strength and hardness increased, while elongation and impact value decreased. We obtained the optimum forging conditions as follow, forging ratio is 30%, forging starting temperature is $1200^{\circ}C$ and forging finishing temperature is $950^{\circ}C$.

용탕단조법에 의한 금속간화합물/Al기지 복합재료 개발을 위한 기초연구 (A Study on Fabrication of Intermetallic Compounds/Al Matrix Composites by Squeeze Casting)

  • 최답천;이경구;이연오
    • 한국주조공학회지
    • /
    • 제14권5호
    • /
    • pp.419-428
    • /
    • 1994
  • The microvickers hardness and microstructure of Fe/Al composite fabricated by squeeze casting method were investigated. Pure Al and A356 Alloy were chosen for the matrix composition and Fe preform was fabricated with sintered Fe powder at $1000^{\circ}C$ for 30min. under hydrogen atmosphere. Experimental variables were included preheating temperature, melt temperature and applied pressure. Analysing the experimental result concerning microstructure of fabricated composites, Fe/A356 composite showed improved microstructure at $600^{\circ}C$ melt temperature and $350^{\circ}C$ preform preheating temperature in Fe distribution and Infiltrated distance. The results of EDX and XRD showed that the interfacial zones of Fe/Al composite were composed of non-equilibrium intermetallic layers[$(Al_5Fe_2)_x$, $Al_{13}Fe_4m\;Fe_3Al$, FeAl]. The microvickers hardness of Fe/Al composite showed higher value than Fe/A356 composite in interface.

  • PDF

Mo가 고크롬주철의 조직 및 경도에 미치는 영향 (Effects of Mo on the Microstructure and Hardness in High Chromium Cast Irons)

  • 류성곤
    • 한국주조공학회지
    • /
    • 제16권2호
    • /
    • pp.141-148
    • /
    • 1996
  • In high chromium cast iron, the control of matrix microstructure as well as carbide structure is important to the performance as a wear resistant material. In this study, 3.0% C-24.0% Cr white cast irons with various molybdenum contents(residual, 1.0%, 3.0% and 5.0%) were solidified conventionally and unidirectionally for studying their effects on the microstructure and hardness. In the conventional casting, two sets of castings were poured from each melt. One set of the castings consisted of cylindrical bars of 10 and 20mm by 155mm long. The second set of the castings was a cylindrical bar of 30mm by 200mm long. On the other hand, a pep-set mold set on the Cu plate was employed to make the solidification unidirectionally. X-ray diffraction method was used to observe retained austenite and carbides in the high chromium cast iron. The morphology of eutectic $M_7C_3$ carbides changed from needle-like type to nodular type with the increase of Mo content. And, the presence of $M_2C$ carbides was identified in the sample where Mo was added over 3.0 %. Primary and eutectic carbides appeared as rod type and corngrain type, respectively in the unidirectionally solidified samples which were cut to parallel to the solidification direction. In the EDX analysis, Cr concentration was higher in the primary and eutectic $M_7C_3$ carbides, Mo in the $M_2C$ carbides, and Fe in the matrix.

  • PDF

열간압연에 따른 AZ61 및 AZ80 마그네슘 합금의 미세조직 및 집합조직 발달에 대한 연구 (Development of Microstructure and Texture of AZ61 and AZ80 Magnesium Alloys by Hot Rolling)

  • 이지호;박노진
    • 열처리공학회지
    • /
    • 제33권2호
    • /
    • pp.49-56
    • /
    • 2020
  • Magnesium alloy is a metal with high specific strength and light weight, and is attracting attention as a next generation metal for environmentally friendly automobiles and transportation equipment. However, magnesium alloys have a problem of degrading formability due to the basal texture developed during processing, and their application is limited. Although active researches on the control of textures have been conducted in order to minimize this problem, there is a lack of research on the formation of microstructures and textures according to elemental differences. In this study, AZ61 and AZ80 magnesium alloys were selected to investigate the effects of aluminum addition on the microstructure development of magnesium alloys. This research has proven that the increase of the rolling rate results in the decrease of the average grain size of the two alloys, the increase of the hardness, and the increase of the fraction of twins. As shown on this research below, the basal texture developed strongly as the rolling ratio increased. On the other hand, this research also has proven that the two alloys exhibited different texture strength and distribution tendencies, which could be due to the effects of aluminum addition on work hardening, grain size, and twin behavior.

분말시스압연법에 의해 제조된 3vol%CNT 강화 Cu기 복합재료의 미세조직 및 기계적 성질 (Microstructure and Mechanical Properties of 3vol%CNT Reinforced Cu Matrix Composite Fabricated by a Powder in Sheath Rolling Method)

  • 이성희
    • 한국재료학회지
    • /
    • 제30권3호
    • /
    • pp.149-154
    • /
    • 2020
  • A powder-in-sheath rolling method is applied to the fabrication of a carbon nano tube (CNT) reinforced copper composite. A copper tube with outer diameter of 30 mm and wall thickness of 2 mm is used as sheath material. A mixture of pure copper powder and CNTs with a volume content of 3 % is filled in a tube by tap filling and then processed to an 93.3 % reduction using multi-pass rolling after heating for 0.5 h at 400 ℃. The specimen is then sintered for 1h at 500 ℃. The relative density of the 3 vol%CNT/Cu composite fabricated using powder in sheath rolling is 98 %, while that of the Cu powder compact is 99 %. The microstructure is somewhat heterogeneous in width direction in the composite, but is relatively homogeneous in the Cu powder compact. The hardness distribution is also ununiform in the width direction for the composite. The average hardness of the composites is higher by 8Hv than that of Cu powder compact. The tensile strength of the composite is 280 MPa, which is 20 MPa higher than that of the Cu powder compact. It is concluded that the powder in sheath rolling method is an effective process for fabrication of sound CNT reinforced Cu matrix composites.

분무 Al-Zn-Mg 합금의 기계적 성질 및 미세조직에 미치는 Ag 첨가의 영향 (A Study on the Effects of Ag Addition on the Mechanical Properties and Microstructure in Atomized Al-Zn-Mg Alloys)

  • 신희상;정태호;남태운
    • 한국주조공학회지
    • /
    • 제19권6호
    • /
    • pp.456-465
    • /
    • 1999
  • The overall objective of this study is to investigate the effect of Ag addition on the mechanical properties and microstructure of rapid solidified 7000 Al series alloys. Al-Zn-Mg-Cu alloys with small amounts of Ag was fabricated into the powder by gas atomization. The powder was extruded after the cold compaction and degassing and then followed by T6 heat treatment. Microstructure observation, phase analysis, room and high temperature tensile test and hardness test were pursued. The tensile strength and hardness of Ag-added alloy after heat treatment was increased with increasing Ag contents. However, the elongation of extruded alloys was not increased as much as to be expected. The reason of this result seems to be related to $the{\Omega}$ phase, which contribute to the high temperature strength stability of Al-Cu-Zn alloys through the formation of eutectoid with Ag addition.

  • PDF

Microstructure and Mechanical Properties of Solution Treatment and Sr-Modification of Al-12%Si-1.5%Cu Alloy

  • Surin, Prayoon;Wong on, Jessada;Eidhed, Krittee
    • International Journal of Advanced Culture Technology
    • /
    • 제3권2호
    • /
    • pp.132-137
    • /
    • 2015
  • The purpose of this paper was to investigate the effects of solution treatment time and Sr-modification on the microstructure and property of the Al-Si piston alloy. It was found that as-cast microstructures of unmodified and Sr-modified Al-Si alloys consisted of a coarse acicular plate of eutectic Si, $Cu_3NiAl_6$ and $Mg_2Si$ phases in the ${\alpha}$-Al matrix but different in size and morphology. Both size and inter-particle spacing of Si particles were significantly changed by increasing of the solution treatment time. After a short solution treatment, the coarse acicular plate of the eutectic Si appears to be fragmented. Fully modified microstructure of Sr-modified alloy can reduce the solution treatment time to shorter compared to unmodified alloy. The maximum of a peak hardness value is found in the very short solution treatment of both Al-Si piston alloys. Compared to 10 h solution treatment, the solution treatment of 2-4 h is sufficient to achieve appropriate microstructures and hardness. The short solution treatment is very useful to increase the productivity and to reduce the manufacturing cost of the Al-Si piston alloys.

Ag-CdO계 전기접점재료의 미세조직에 미치는 열처리 조건과 산화 공정의 영향 (The Effect of The Heat Treatment Condition and the Oxidation Process on the Microstructure of Ag-CdO Contact Materials)

  • 권기봉;남태운
    • 한국주조공학회지
    • /
    • 제25권6호
    • /
    • pp.226-232
    • /
    • 2005
  • Contact material is widely used in the field of electrical parts. Ag-CdO material has a good wear resistance and stable contact resistance. In order to establish optimizing heat treatment condition, rolling temperature and oxidation process, we studied the microstructure of Ag-CdO material with various conditions. The experimental procedure were melting using high frequency induction, heat treatment, rolling and internal oxidation. And we experimented on difference process, Post-oxidaion. In this study, we obtained the optimizing heat treatment condition was $700^{\circ}C$ for 15 min. and the optimizing rolling temperature was $730^{\circ}C$. In investigation of the microstructure of oxidized material, coarse oxide and depleted oxidation layer existed. The hardness was average Hv 70. When we used Post-oxidation, oxides were finer than prior process and depleted oxidation layer did not exist. The hardness of Post-oxidation material was average Hv 80. And the optimizing rolling temperature was $800^{\circ}C$.

Additive 공정을 이용한 미세 피치용 니켈 메탈마스크의 제조 및 특성평가 (Fabrication and Characterizations of Nickel Metal Mask with fine Pitch by Additive Process)

  • 박의철;임준형;김규태;박시홍;황수민;심종현;정승부;김봉수;주진호
    • 한국전기전자재료학회논문지
    • /
    • 제20권11호
    • /
    • pp.925-931
    • /
    • 2007
  • We successively fabricated the Ni metal mask by additive method and evaluated the effects of wetting agents addition on the microstructure, hardness, and friction coefficient. In the process, the additive patterns with fine hole and pitch were made by photolithography technique and subsequently Ni plate was electroformed on the patterns. We found that the microstructure and mechanical properties were significantly varied when the different combinations of the wetting agents were used. When the wetting agents of both SF-1 and SF-2 were added, the microstructure consisted of crystal and amorphous phases, the grain size reduced to 5-40 nm, the RMS value decreased to 11.4 nm and the wear resistance improved. In addition, the hardness was as high as 638 Hv which is higher than that of commercial stainless steel mask and this improvement is probably due to the presence of amorphous Phase and fine grain size. The improvement of the wear resistance can provide a higher reliability and a longer service life.