• Title/Summary/Keyword: microstructure hardness

Search Result 1,339, Processing Time 0.027 seconds

Tribological Behavior of Whiteware with Different Transparent Glazes

  • Heo, Sujeong;Kim, Soomin;Kim, Ungsoo;Pee, Jaehwan;Han, Yoonsoo;Kim, Seongwon;Lee, Sungmin;Kim, Hyungtae;Oh, Yoonsuk
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.3
    • /
    • pp.186-191
    • /
    • 2015
  • Tribological properties of whiteware with various transparent glazes, which have different composition and microstructure, were investigated. The wear resistance and friction behavior of the glazed whiteware are a very important aspect if the whiteware is used as tableware and for sanitation purposes. Generally, the wear property is influenced by the microstructure and surface morphology of the material. The whiteware specimens with two kinds of transparent glazes were fabricated by using the commercially available porcelain body. Furthermore, the commercial tableware, such as bone china, and traditional tableware were also examined as reference materials. All of the specimens showed that different pore structures might affect the mechanical and tribological properties. It seems that the wear resistance of whiteware is substantially related to the pore size and distribution of glaze rather than the hardness value of the specimen.

Properties of yttria-stabilized zirconia ceramics for optical ferrule (광체롤용 이트리아 안정화 지르코니아 세라믹스의 특성)

  • 황규석;윤연흠;강보안;양순호;오정선;김병훈;김상복
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.4
    • /
    • pp.162-167
    • /
    • 2003
  • In order to evaluate the properties of the sintered zirconia for optical ferrule, specimens were prepared at 1350, 1400 and $1450^{\circ}C$ using starting materials supplied by A, B and C providers. Crystallinity, microstructure and mechanical strength were tested as a function of sintering temperature. Crystallinity of the sintered specimens was determined by X-ray diffraction analysis. A field emission-scanning electron microscope was used for studying the microstructure after sintering. Bending strength and Vickers' hardness were also examined by universial tester and Vickers' hardness tester, respectively. The specimen B sintered at $1350^{\circ}C$ was favorable because of its high tetragonality and good mechanical strength for practical usage.

Microstructure and Mechanical Properties of a Cold-Rolled Al-6.5Mg-1.5Zn-0.5Fe-0.5Mn System Alloy (냉간압연된 Al-6.5Mg-1.5Zn-0.5Fe-0.5Mn계 합금의 미세조직 및 기계적 특성)

  • Jo, Sang-Hyeon;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.30 no.5
    • /
    • pp.246-251
    • /
    • 2020
  • The annealing characteristics of cold-rolled Al-6.5Mg-1.5Zn-0.5Fe-0.5Mn alloy, newly designed as an automobile material, are investigated in detail, and compared with those of other aluminum alloys. Using multi-pass rolling at room temperature, the ingot aluminum alloy is cut to a thickness of 4 mm, width of 30 mm, and length of 100 mm to reduce the thickness to 1 mm (r = 75 %). Annealing after rolling is performed at various temperatures ranging from 200 to 500 ℃ for 1 hour. The specimens annealed at temperatures up to 300 ℃ show a deformation structure; however, from 350 ℃ they have a recrystallization structure consisting of almost equiaxed grains. The hardness distribution in the thickness direction of the annealed specimens is homogeneous at all annealing temperatures, and their average hardness decreases with increasing annealing temperature. The tensile strength of the as-rolled specimen shows a high value of 496 MPa; however, this value decreases with increasing annealing temperature and becomes 338 MPa after annealing at 400 ℃. These mechanical properties of the specimens are compared with those of other aluminum alloys, including commercial 5xxx system alloys.

Effect of Solution Annealing on the Microstructure and Mechanical Properties of Modified 440A Martensitic Stainless Steel (Mod. 440A 마르텐사이트 스테인리스강의 미세조직과 기계적 성질에 미치는 오스테나이트화 처리의 영향)

  • Kim, Young-Chul;Kwon, Soon-Doo;Jung, Byong-Ho;Kang, Chang-Yong
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.103-108
    • /
    • 2013
  • This study was investigated the effect of austenitizing treatment the microstructure and mechanical properties in modified 440A steel, and the results were as follows. The amount of remaining carbide decreases with increasing the austenitizing treatment temperature, and all carbide is completely dissolved at $1250^{\circ}C$. The amount of remaining carbide decreases with increasing the austenitizing treatment time, but the carbide remains insoluble up to 120 minutes at $1050^{\circ}C$. The strength and hardness gradually decrease with increasing the austenitizing treatment temperature and is significantly lower at $1250^{\circ}C$, while the elongation and the impact value rapidly increase. The strength and hardness rapidly decrease, the elongation and impact value rapidly insrease with increasing the austenitizing treatment time and exhibit no change at above 120 minutes. The austenitizing treatment modified 440A steel is required for temperature of above $1050^{\circ}C$ and time of above 60 minutes.

A Study on the Die-casting Process of AM50 Magnesium Alloy (AM50 마그네슘 합금의 다이캐스팅 공정에 관한 연구)

  • Jang C. W.;Kim S. K.;Han S. H.;Seo Y. K.;Kang C. G.;Lee J. H.;Park J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.415-418
    • /
    • 2005
  • In recent years, Magnesium (Mg) and its alloys have become a center of special interest in the automotive industry. Due to their high specific mechanical properties, they offer a significant weight saving potential in modem vehicle constructions. Most Mg alloys show very good machinability and processability, and even the most complicated die casting parts can be easily produced. The die casting process is a fast production method capable of a high degree of automation for which certain Mg alloys are ideally suited. Although Mg alloys are fulfilling the demands for low specific weight materials with excellent machining and casting abilities, they are still not used in die casting process to the same extent as the competing material aluminium. One of the reasons is that effects of various forming variables for die casting process is not closely examined from the viewpoint of die design. In this study, step die and flowability tests for AM60 were performed by die casting process according to various combination of casting pressure and plunger velocity. Microstructure and Victors hardness tests were examined and performed for each specimen to verify effects of forming conditions.

  • PDF

A study on the characteristics of Pb free Sn-2%Ag-x%Bi solder alloys (Pb Free Sn-2%Ag-x%Bi계 Solder의 특성에 관한 연구)

  • 흥순국;박일경;강정윤
    • Journal of Welding and Joining
    • /
    • v.16 no.3
    • /
    • pp.148-156
    • /
    • 1998
  • The purpose of this study is to investigate the characteristics of Pb-Free Sn-2%Ag-Bi solder alloys. The solder alloys used in this study is Sn-2%Ag-(3,5,7,9%) Bi It is examined that their properties such as melting range, wettability, microstructure, microhardness, and tensile property. The addition of Bi(3,5,7,9%) lowered the melting point of the solder and the melting range was 196~203$^{\circ}C$. The wettability of the solder as equal to that of Sn-37% Pb solder. The morphology of structure did not change largely by addition of Bi. But the structure of cellular dendrite of linear type displayed. The tensile strength of the solder was superior to that of Sn-37%Pb solder. But the elongation was inferior to that of Sn-37%Pb solder. The hardness of Sn-2%Ag solder was tow times and that of Sn-2%Ag-Bi solder was three times of that in Sn-37%Pb solder. But the effect of increment of Bi content did not change largely.

  • PDF

Microstructure Evolution and Its Effect on Strength during Thermo-mechanical Cycling in the Weld Coarse-grained Heat-affected Zone of Ti-Nb Added HSLA Steel (Ti-Nb첨가 저합금강 용접열영향부에서의 열-응력 이력이 미세조직 및 기계적 성질에 미치는 영향에 관한 연구)

  • Moon, Joonoh;Lee, Changhee
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.44-49
    • /
    • 2013
  • The influence of thermo-mechanical cycling on the microstructure and strength in the weld coarse-grained heat affected zone (CGHAZ) of Ti-Nb added low carbon HSLA steel was explored through Vickers hardness tests, nanoindentation experiments, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. Undeformed and deformed CGHAZs were simulated using Gleeble simulator with different heat inputs of 30kJ/cm and 300kJ/cm. At high heat input of 300kJ/cm, the CGHAZ consisted of ferrite and pearlite and then their grain sizes were not affected by deformation. At low heat input of 30kJ/cm, the CGHAZ consisted of lath martensite and then the sizes of prior austenite grain, packet and lath width decreased with deformation. In addition, the fraction of particle increased with deformation and this is because the precipitation kinetics was accelerated by deformation. Meanwhile, the Vickers and nanoindentation hardness of deformed CGHAZ with 30kJ/cm heat input were higher than those of undeformed CGHAZ, which are due to the effect of grain refinement and precipitation strengthening.

Effect of Trace Metallic Additives of Al-Fe-X on Microstructure and Properties of Zn Electrodeposits (아연도금층의 조직 및 물성에 미치는 미량금속원소(Al-Fe-X)의 복합첨가의 영향(I))

  • 예길촌;김대영;서경훈;안덕수
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.6
    • /
    • pp.444-454
    • /
    • 2003
  • The effect of trace metallic additives of Al-Fe-X on microstructure, glossiness and hardness of Zn electrodeposits was investigated by using sulfate bath. The preferred orientation of Zn deposits with Al-Fe additives was (10 l)(l:3,4,2), while that of Zn deposits with Al-Fe-X(Ni,Co) additives was either (002) or (002)+(103)ㆍ(104) mixed orientation. The preferred orientation of Zn deposits with Al-Fe-Cr additives changed from (002)+(10 l) to (10 l) orientation with increasing amount of Al additive. The surface morphology of the Zn deposits was closely related to the preferred orientation of the deposits. The glossiness of Zn deposits with Al-Fe additives increased in comparison with that of pure Zn deposit. That of the Zn deposits with Al-Fe-X additives was related to the morphology of the deposits and changed according to type of additives. The hardness of Zn deposits with Al-Fe-X(Ni,Co,Cr) additives was noticeably higher than that of Zn deposits with Al-Fe additives.

Correlation of Cold Work, Annealing, and Microstructure in Zircaloy-4 Cladding Material (지르칼로이-4피복재에서 가공도, 열처리 및 미세조직과의 상호관계)

  • Jeong, Yong-Hwan;Kim, Uh-Chul
    • Nuclear Engineering and Technology
    • /
    • v.18 no.4
    • /
    • pp.267-272
    • /
    • 1986
  • To obtain various necessary data for the manufacturing and the use of the nuclear fuel cladding tube, the effects of deformation and heat treatment on Properties of Zircalof-4 material have been studied. The hardness is increased rapidly at a low degree of cold work and increased rapidly at cold work above 10%. Recrystallization has been completed at 64$0^{\circ}C$, 59$0^{\circ}C$, and 555$^{\circ}C$ in 30%, 60% and 80% cold worked specimen, respectively. The transformation of microstructure with increasing cooling rate after $\beta$-annealing is as follows; coarse Widmanstatten ($\alpha$) longrightarrow fine parallel plate ($\alpha$) longrightarrow martensite ($\alpha$$^{'}$). At the same time, hardness increased with increasing cooling rate. rate.

  • PDF

Influence of neutron irradiation and ageing on behavior of SAV-1 reactor alloy

  • Tsay, K.V.;Rofman, O.V.;Kudryashov, V.V.;Yarovchuk, A.V.;Maksimkin, O.P.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3398-3405
    • /
    • 2021
  • This study observed the effect of neutron irradiation and ageing on the microstructure, hardness, and corrosion resistance of SAV-1 (Al-Mg-Si) alloy. The investigated material was irradiated with neutrons to fluences of 1021-1026 n/m2 in the WWR-K research reactor and kept in dry storage. Long-term irradiation led to an increase in hardness of the alloy and a deterioration of pitting corrosion resistance. Post-irradiation ageing for 1 h at 100-300 ℃ resulted in a decrease in microhardness of the irradiated SAV-1. The effect of post-irradiation ageing on pitting corrosion was made clear through the formation of Guinier-Preston zones and secondary precipitates in the Al matrix. Ageing at 250 ℃ corresponded to the development of stable microstructure and the highest corrosion resistance for the irradiated samples. Mg2Si, Si, and needle-shaped β" precipitates were formed in SAV-1 alloy that was irradiated with low fluences. β" and clusters of rod-shaped B-type precipitates were observed in highly irradiated samples. The precipitates were similar to those seen in non-irradiated pseudo-binary Al-Mg2Si alloys with Si excess.