• 제목/요약/키워드: microstructural modeling

검색결과 35건 처리시간 0.029초

단조용 니켈기지 초내열합금의 조직예측기술 (Microstructure Prediction Technology of Ni-Base Superalloy)

  • 염종택;김정한;홍재근;박노광
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.89-92
    • /
    • 2009
  • As a class of materials, Ni-base superalloys are among the most difficult metal alloys to forge together with refractory metals and cobalt-base superalloys. The mechanical properties of Ni-base superalloys depend very much on grain size and the strengthening phases, $\gamma$' ($Ni_3$(Al,Ti)-type) and $\gamma$".($Ni_3$Nb-type). Especially, the control of grain size remains as a sole means for the control of mechanical properties. The grain size and distribution changes of the wrought superalloys during hot working and heat treatment are mainly controlled by the recrystallization and grain growth behaviors. In this presentation, prediction technology of grain size through the computer-aided process design, and numerical modeling for predicting the microstructure evolution of Ni-base superalloy during hot working were introduced. Also, some case studies were dealt with actual forming processes of Ni-base superalloys.

  • PDF

대퇴골 전자간부 해면골의 미세구조적 특성과 생역학적 특성에 관한 연구 (A study on the micro-structural and biomechanical properties of trabecular bone in intertrochanteric region)

  • 백명현;원예연;최문권;김광균;김한성
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.923-926
    • /
    • 2005
  • To investigate the relationship between BMD, micro-structural and mechanical properties in intertrochanteric trabecular bone, the PIXI-mus2 system, micro-CT and FE model were used. The purpose of this study were (1) to apply high-resolution imaging techniques (micro-CT imaging) in combination with new computer modeling techniques (FEA) to quantify 3D microstructural and biomechanical properties of trabecular bone in the intertrochanteric region, and (2) determine if the prediction of bone elastic constant can be improved with structural index.

  • PDF

결함을 고려한 결정 재료의 밀리 성형에 관한 연구 (A Study on the Milli-Forming of Crystalline Materials with Damage)

  • 김용일;심경섭;이용신
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.120-126
    • /
    • 2003
  • Finite element analysis model is suggested for analysis of milli-forming process, which forms milli-size products. Since the size of workpiece in a milli-forming process ranges from a few hundred micrometers to a few millimeters, microstructural changes such as the growth of micro-voids and the development of preferred orientation in a grain become crucial factors for the success of milli-forming. This analysis model incorporates anisotropy from deformation torture and deterioration of mechanical properties due to the growth of micro-voids. Applications of the proposed modeling to milli-forming are given and the results are carefully examined to understand the deformation characteristics such as texture development and damage evolution during extrusion/drawing of a milli-bar.

  • PDF

확률함수를 이용한 비균질 Ti-6Al-4V 합금의 변형거동 모델링 (Modeling Deformation Behavior of Heterogenous Microstructure of Ti-6AI-4V Alloy using Probability Functions)

  • 고은영;김태원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.292-297
    • /
    • 2003
  • A stochastic approach has been presented for superplastic deformation of Ti-6AJ-4V alloy, and probability function are used to heterogeneous phase distributions. The experimentally observed spatial correlation function are developed, and microstructural evolutions together with superplastic deformation behavior have investigated by means of the probability function. The result have shown that the probability varies approximately linearly with separation with distance, and significant deformation enhanced probability changes during the deformation. The stress-strain behavior with the evolutions of probability function can be correctly predicted by the model. The finite clement implementation using Monte Carlo simulation associated with phase re-distributions shows that better agreement with experimental data of failure strain on the test specimen.

  • PDF

Thermal-induced nonlocal vibration characteristics of heterogeneous beams

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in materials Research
    • /
    • 제6권2호
    • /
    • pp.93-128
    • /
    • 2017
  • In this paper, thermal vibration behavior of nanoscale beams made of functionally graded (FG) materials subjected to various types of thermal loading are investigated. A Reddy shear deformation beam theory which captures both the microstructural and shear deformation effects without the need for any shear correction factors is employed. Material properties of FG nanobeam are assumed to be temperature-dependent and vary gradually along the thickness according to the power-law form. The influence of small scale is captured based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are derived through Hamilton's principle and they are solved applying analytical solution. The comparison of the obtained results is conducted with those of nonlocal Euler-Bernoulli beam theory and it is demonstrated that the proposed modeling predict correctly the vibration responses of FG nanobeams. The effects of nonlocal parameter, material graduation, mode number, slenderness ratio and thermal loading on vibration behavior of the nanobeams are studied in detail.

기하적 필수 전위에 의한 길이효과를 고려한 입자 강화 알루미늄 복합재의 강도해석 (Strength Analysis of Particle-Reinforced Aluminum Composites with Length-Scale Effect based on Geometrically Necessary Dislocations)

  • 서영성;김용배;이장규
    • 소성∙가공
    • /
    • 제18권6호
    • /
    • pp.482-487
    • /
    • 2009
  • A finite element based microstructural modeling for the size dependent strengthening of particle reinforced aluminum composites is presented. The model accounts explicitly for the enhanced strength in a discretely defined "punched zone" around the particle in an aluminum matrix composite as a result of geometrically necessary dislocations developed through a CTE mismatch. The density of geometrically necessary dislocations is calculated considering volume fraction of the particle. Results show that predicted flow stresses with different particle size are in good agreement with experiments. It is also shown that 0.2% offset yield stresses increases with smaller particles and larger volume fractions and this length-scale effect on the enhanced strength can be observed by explicitly including GND region around the particle. The strengths predicted with the inclusion of volume fraction in the density equation are slightly lower than those without.

Modeling of an embedded carbon nanotube based composite strain sensor

  • Boehle, M.;Pianca, P.;Lafdi, K.;Chinesta, F.
    • Advances in aircraft and spacecraft science
    • /
    • 제2권3호
    • /
    • pp.263-273
    • /
    • 2015
  • Carbon nanotube strain sensors, or so called "fuzzy fiber" sensors have not yet been studied sufficiently. These sensors are composed of a bundle of fiberglass fibers coated with CNT through a thermal chemical vapor deposition process. The characteristics of these fuzzy fiber sensors differ from a conventional nanocomposite in that the CNTs are anchored to a substrate fiber and the CNTs have a preferential orientation due to this bonding to the substrate fiber. A numerical model was constructed to predict the strain response of a composite with embedded fuzzy fiber sensors in order to compare result with the experimental results obtained in an earlier study. A comparison of the numerical and experimental responses was conducted based on this work. The longitudinal sensor output from the model matches nearly perfectly with the experimental results. The transverse and off-axis tests follow the correct trends; however the magnitude of the output does not match well with the experimental data. An explanation of the disparity is proposed based on microstructural interactions between individual nanotubes within the sensor.

중성자 조사재의 미세구조 설계와 모델링 (A Microstructural Design and Modeling of Neutron-Irradiated Materials)

  • 장근옥
    • 공업화학
    • /
    • 제31권4호
    • /
    • pp.347-351
    • /
    • 2020
  • 재료는 방사선과 상호작용을 통해 그 물리적, 화학적 특성이 변화하며 여러 방사선 중에서 전하를 띄고 있지 않아 침투깊이가 깊은 중성자 조사에 의한 금속소재의 조사손상은 원자력발전소의 안전과 관련해서 오랜 기간 동안 집중적인 연구대상이었다. 중성자 조사에 의한 조사손상은 초반 피코 초 스케일에서 벌어지는 원자단위의 점결함의 생성으로 시작되며 그 이후의 전개 양상은 전위 고리나 공극과 같은 미세구조상 결함으로 확인될 수 있다. 이러한 미세구조 상 결함의 형상과 분포에 따라 소재의 특성에 미치는 효과는 상이하게 된다. 그러므로 중성자 조건에 따른 미세구조를 예측하는 것은 매우 중요한 일로, 본 논문에서는 중성자 조사에 의한 재료 내의 미세구조 발달에 대해 리뷰한 뒤 조사된 소재의 미세구조 변화 예측에 널리 사용될 수 있는 상장 모델에 대해 간략히 소개하였다.

Numerical analysis of the thermal behaviors of cellular concrete

  • She, Wei;Zhao, Guotang;Yang, Guotao;Jiang, Jinyang;Cao, Xiaoyu;Du, Yi
    • Computers and Concrete
    • /
    • 제18권3호
    • /
    • pp.319-336
    • /
    • 2016
  • In this study, both two- and three-dimensional (2D and 3D) finite-volume-based models were developed to analyze the heat transfer mechanisms through the porous structures of cellular concretes under steady-state heat transfer conditions and to investigate the differences between the 2D and 3D modeling results. The 2D and 3D reconstructed pore networks were generated from the microstructural information measured by 3D images captured by X-ray computerized tomography (X-CT). The computed effective thermal conductivities based on the 2D and 3D calculations performed on the reconstructed porous structures were found to be nearly identical to those evaluated from the 2D cross-sectional images and the 3D X-CT images, respectively. In addition, the 3D computed effective thermal conductivity was found to agree better with the measured values, in comparison with the 2D reconstruction and real cross-sectional images. Finally, the thermal conductivities computed for different reconstructed porous 3D structures of cellular concretes were compared with those obtained from 2D computations performed on 2D reconstructed structures. This comparison revealed the differences between 2D and 3D image-based modeling. A correlation was thus derived between the results of the 3D and 2D models.

비균일 조직에 따른 불균일 변형 해석을 위한 미시역학적 초소성 모텔 (Micromechanical Superplastic Model for the Analysis of Inhomogeneous Deformation in Heterogeneous Microstructure)

  • 김태원
    • 대한기계학회논문집A
    • /
    • 제25권12호
    • /
    • pp.1933-1943
    • /
    • 2001
  • A micromechanical model is presented for superplasticity in which heterogeneous microstructures are coupled with deformation behavior. The effects of initial distributions of grain size, and their evolutions on the mechanical properties can be predicted by the model. Alternative stress rate models such as Jaumann rate and rotation incremental rate have been employed to analyze uniaxial loading and simple shear problems and the appropriate modeling was studied on the basis of hypoelasticity and elasto-viscoplasticity. The model has been implemented into finite element software so that full process simulation can be carried out. Tests have been conducted on Ti-6Al-4V alloy and the microstructural features such as grain size, distributions of grain size, and volume fraction of each phase were examined for the materials that were tested at different strain rates. The experimentally observed stress-strain behavior on a range of initial grain size distributions has been shown to be correctly predicted. In addition, the effect of volume fraction of the phases and concurrent grain growth were analyzed. The dependence of failure strain on strain rate has been explained in terms of the change in mechanism of grain growth that occurs with changing strain rate.