• 제목/요약/키워드: microstructural factor

검색결과 88건 처리시간 0.027초

유한요소해석을 통한 비조질강 성형 특성 분석 (A Study on Forging Characteristic of Non-Heat Treated Micro-Alloyed Steel Using Finite Element Analysis)

  • 권용남;김상우;이영선;이정환
    • 소성∙가공
    • /
    • 제15권8호
    • /
    • pp.609-614
    • /
    • 2006
  • Micro-alloyed steels(MA steels) for cold forging was developed to replace the usual quenched and tempered steel. MA steels have several advantages over the conventional quenched and tempered carbon steels. First of all, energy consumption could be lowered due to the elimination of spherodizing annealing and quenching/tempering heat treatment. Also, bending during quenching could be avoided when MA steels are applied for manufacturing of long fastener parts. However, larger amount of load is exerted on the dies compared than in the case of conventional mild steels, which might lead to the earlier fracture of dies, when MA forging steels are applied in forging practice. Therefore, die lift could be a critical factor to determine whether HA forging steels could be widely applied in cold forging practice. In the present study, authors have investigated the forging characteristics of non-heat treated micro-alloyed steel by using a series of experimental and numerical analyses. Firstly, microstructural features and its effect on the deformation behavior have been studied. Numerical analysis has been done on the forging of guide rod pin to investigate for the optimization of forging process and die stress prediction.

입자분쇄 시간변화에 따른 압전세라믹스 제작공정과 특성 분석 (Processing and Characterization of Piezoelecteric Geramics Depending on Ball Milling Time)

  • 박종호;배숙희;김철수;송석천;허창회;이상렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.413-415
    • /
    • 2000
  • Piezoelectric ceramics of PZT have been developed to apply for transformers in notebook. Use of piezoelectric ceramics in applications like piezoelectric transformers was made possible by the development of new materials with high electromechanical coupling coefficients and high mechanical quality factor. "Hard" ferroelectiric ceramics of complex composition based on lead zirconate titanate with Mn additive have been prepared. The perovskitic phase reaction of the oxides. The crucial role played by the intermediate mixing and grinding procedures in the assessment of the final properties of the material was investigated. Densification up to approximately the theoretical density value was achieved. The polarization was obtained by subjecting the samples at $30kVcm^{-1}$ poling electric field, in a silicon oil bath heated at $110^{\circ}C$. Their microstructural and morphological properties were checked by X-ray diffraction analysis and scanning electron microscopy. The optimized samples presented very high qualify and electromechanical coupling factors, together with small dielectric loss.

  • PDF

방향분포를 가진 다상 금속복합재료의 탄성 및 전도해석에 관한 연구 (Elasticity and Conduction analysis of multi-Phase, Misoriented Metal matrix Composites)

  • 정현조
    • 대한기계학회논문집
    • /
    • 제19권9호
    • /
    • pp.2181-2193
    • /
    • 1995
  • The effective elasticity and conduction of composite materials containing arbitrarily oriented multiple phases has been analyzed using the concept of orientation-dependent average fields and concentration factors. The analysis provided closed form expressions for the effective stiffnesses and conductivities. Under the prescribed boundary conditions, the concentration factors were evaluated by the equivalent inclusion principle, through which the interaction between various phases is approximated by the Mori-Tanaka mean-field approximation. SiC particulate(SiC$_{p}$) reinforce aluminum(Al) matrix composites were fabricated and their elastic constants and electrical conductivities were measured together with a careful study of their microstructure. The measured properties showed a systematic anisotropy and this behavior could be attributed to the preferred orientation of SiC$_{p}$. The theoretical model developed was applied to the computation of the anisotropic properties of these composites. Both two-phase and three-phase composites were considered based on the microstructural information. The SiC$_{p}$ was modeled as an ellipsoid with planar random orientation distribution in the extruded Al/SiC$_{p}$ composites. The effect of extraneous phase such as intermetallic compounds was also investigated.tigated.

소성 온도가 (Na,K,Li)(Nb,Sb,Ta)O3 세라믹스의 유전 및 압전 특성에 미치는 영향 (Effect of Sintering Temperature on the Dielectric and Piezoelectric Properties of (Na,K,Li)(Nb,Sb,Ta)O3 Ceramics)

  • 김유석;류주현;홍재일;이지영
    • 한국전기전자재료학회논문지
    • /
    • 제26권11호
    • /
    • pp.806-809
    • /
    • 2013
  • In this study, $(Na_{0.525}K_{0.443}Li_{0.037})(Nb_{0.883}Sb_{0.08}Ta_{0.037})O_3+0.10\;wt%Bi_2O_3+0.35\;wt%B_2O_3$ ceramics were prepared by conventional soild-state sintering process. The specimens were sintered at temperature range from $1,060^{\circ}C$ to $1,100^{\circ}C$. XRD (X-ray diffractron), SEM (scanning electron microscope) were used to analyze the crystal structure and microstructural sproperties of specimens. And also, $T_{O-T}$, TC were observed by the mesurement of temperature dependence of dielectric constant. Excellect physical properties of the piezoelectric constant $d_{33}$= 170 pC/N, electromechanical coupling factor kp= 0.312, Tc= $315^{\circ}C$ were obtained, respectively, from the specimen sintered at $1,080^{\circ}C$.

미역과 다시마 가루를 첨가한 케이크의 물리화학적 및 관능적 특성 (Physico-chemical and Sensory Characteristics of Cakes Added Sea Mustard and Sea Tangle Powder)

  • 송영선;안정미
    • 한국식품영양과학회지
    • /
    • 제28권3호
    • /
    • pp.534-541
    • /
    • 1999
  • This study was undertaken to examine the effect of sea tangle and sea mustard on physiochemical and sensory characteristics of cakes and the possibility commercialization of these functional cakes. The moisture contents of cakes prepared with sea tangle and sea mustard were higher than those of control, and a positive correlation between water holding capacity(WHC) and moisture contents was observed(r=0.836). As addition level of sea tangle and sea mustard was increased, volume of cakes were decreased, whereas hardness was increased slightly and color became deep. Hardness was strongly correlated to the volume of cakes(r= 0.914). Visual observation by photomicrography showed that, as addition level of sea mustard and sea tangle was increased, formation of air cells were prohibited and thus volume of cakes was decreased. The microstructural observation by scanning electron microscopy(SEM) showed that air cells of cakes were well developed up to 5% addition of sea tangle powder. As a result of the sensory evaluation for the cakes prepared with sea tangle and sea mustard, no significant difference was observed between control and those addition levels up to 5%. Flavor was proved to be the most important factor in determining overall acceptability and hedonic hardness score was inversely correlated to the objective hardness value(r= 0.853).

  • PDF

해양구조용 강재의 국부취화영역에 관한 연구 (Local brittle zone of offshore structural steel welds)

  • 김병천;엄정현;이종섭;이성학;이두영
    • Journal of Welding and Joining
    • /
    • 제7권2호
    • /
    • pp.35-48
    • /
    • 1989
  • This study is concerned with a correlation of microstructure and local brittle zone (LBZ) in offshore structural steel welds. The influence of the LBZ on fracture toughness was investigated by means of simulated heat-affected zone (HAZ) tests as well as welded joint tests. Micromechanical processes involved in void and cleavage microcrack formation were also identified using notched round tensile tests and subsequent SEM observations. The LBZ in the HAZ of a multiphase welded joint is the interstitially reheated coarse grained HAZ, which is influenced by metallurgical factors such as effective grain size, the major matrix structure and the amount of high-carbon martensite-austenite (M-A) constituents. The experimental results indicate that Chirpy energy was found to scale monotonically with the amount of M-A constituents, confirming that the M-A constituent is the major microstructural factor controlling the HAZ toughness. In addition, voids and microcracks are observed to initiate at M-A constituents by the shear cracking process. Thus, the M-A constituent played an important role in initiating the voids and microcracks, and consequently caused brittle fracture.

  • PDF

Fresh and hardened properties of rubberized concrete using fine rubber and silpozz

  • Padhi, S.;Panda, K.C.
    • Advances in concrete construction
    • /
    • 제4권1호
    • /
    • pp.49-69
    • /
    • 2016
  • This work investigates the mechanical properties of conventional concrete (CC) and self compacting concrete (SCC) using fine rubber and silpozz were accompanied by a comparative study between conventional rubberized concrete (CRC) and self compacting rubberized concrete (SCRC). Fine rubber (FR) from scrap tires has replaced the fine aggregate (FA) and Silpozz has been used as a replacement of cement at the proportions of 5, 10 and 15%. Silpozz as a partial replacement of cement in addition of superplasticiser (SP) increases the strength of concrete. Fresh concrete properties such as slump test, compaction factor test for CRC, whereas for SCRC slump flow, $T_{500}$, V-funnel, L-box, U-box, J-ring tests were conducted along with the hardened properties tests like compressive, split tensile and flexural strength test at 7, 28 and 90 days of curing. The durability and microstructural behavior for both CRC and SCRC were investigated. FR used in the present study is 4.75 mm passing with fineness modulus 4.74.M30 grade concrete is used with a mix proportion of 1:1.44:2.91 and w/c ratio as 0.43. The results indicate that as FR quantity increases, workability of both CRC and SCRC decreases. The results also show that the replacement of natural fine aggregate (NFA) with FR particles decreases the compressive strength with the increase of flexural strength observed upto 5% replacement of FR. Also replacement of cement with silpozz resulted enhancement of strength in SCRC.

The Origin of Coercivity Enhancement of Sintered NdFeB Magnets Prepared by Dy Addition

  • Yu, N.J.;Pan, M.X.;Zhang, P.Y.;Ge, H.L.
    • Journal of Magnetics
    • /
    • 제18권3호
    • /
    • pp.235-239
    • /
    • 2013
  • The effect of Dy addition on the microstructure and magnetic properties of the sintered NdFeB magnets was investigated. The results of the microstructure analysis showed that Dy-free and Dy-doped samples are composed of $Nd_2Fe_{14}B$ (P42/mnm) and a trace of Nd-rich phase. Dy addition reduces significantly the pole density factor of (004), (006) and (008) crystal faces as estimated by the Horta formula. Accordingly, the coercivity of the Dy-doped sample increases from 2038 $kA{\cdot}m^{-1}$ up to 2288 $kA{\cdot}m^{-1}$. The $H_{cj}(T)/M_s(T)$ versus $H^{min}_N/M_s(T)$ (Kronm$\ddot{u}$ller-plot) behavior shows that the nucleation is the dominating mechanism for the magnetization reversal in these two kinds of magnets, and two microstructural parameters of ${\alpha}_k$ and $N_{eff}$ are obtained. The Kronm$\ddot{u}$ller-Plot gives evidence for an increase of the ${\alpha}_k$ responsible for an increase of the coercivity as the result of the increase of the magnetic field as the magnetic domain reversed.

Fatigue Life Prediction of Laminated Composite Materials by Multiple S-N Curves and Lamina-Level Failure Criteria

  • Hangil You;Dongwon Ha;Young Sik Joo;Gun Jin Yun
    • Composites Research
    • /
    • 제36권1호
    • /
    • pp.42-47
    • /
    • 2023
  • In this paper, we present a fatigue life prediction methodology using multiple S-N curves according to the different stress states of laminated composites. The stress states of the plies of the laminated composites are classified into five modes: longitudinal tension or compression and transverse tension or compression, and shear according to the maximum stress criterion and Puck's criterion with a scaling factor K. This methodology has advantages in computational cost, and it can also consider microstructural characteristics of the composites by applying different S-N curves. The S-N curves for the fatigue analysis are obtained by experimental fatigue test. The proposed methodol is implemented into commercial software, ABAQUS user material subroutine and therefore, the fatigue analysis is conducted using the structural analysis results. The finite element (FE) simulation results are presented for unidirectional composites with and without open-hole. The FE simulation results show that the stress condition is different depending on the fiber orientation of the unidirectional composite, so the fatigue life is calculated with different S-N curves.

구리 배관의 Sn 첨가에 따른 응력 및 다양한 환경에서의 부식 특성 (Corrosion characteristics in stress and various environments with Sn addition to Cu pipe)

  • 김세림;김의준;이명훈;이승효
    • 한국표면공학회지
    • /
    • 제57권3호
    • /
    • pp.192-200
    • /
    • 2024
  • Cu as a heat exchanger tube is an important component in thermal fluid transfer. However, Cu tubes are exposed to stress in certain environments, leading to stress corrosion cracking (SCC). In this study, the effect of Sn addition on microstructure and corrosion characteristics was examined. The microstructural examination revealed the presence of columnar crystal and a grain refinement due to the addition of Sn. Electrochemical measurements showed that the 5 wt.% NH3 environment was the most vulnerable environment to Cu corrosion, and the corrosion current density increased as stress increased. The immersion test exhibited the formation of Cu2O and Cu(OH)2 corrosion product in 3.5 wt.% NaCl and 5 wt.% NH3 environments, respectively. Results indicated that Sn addition to Cu was an important factor in improving the mechanical strength.