Browse > Article
http://dx.doi.org/10.4283/JMAG.2013.18.3.235

The Origin of Coercivity Enhancement of Sintered NdFeB Magnets Prepared by Dy Addition  

Yu, N.J. (Magnetism key laboratory of Zhejiang Province, China Jiliang University)
Pan, M.X. (Magnetism key laboratory of Zhejiang Province, China Jiliang University)
Zhang, P.Y. (Magnetism key laboratory of Zhejiang Province, China Jiliang University)
Ge, H.L. (Magnetism key laboratory of Zhejiang Province, China Jiliang University)
Publication Information
Abstract
The effect of Dy addition on the microstructure and magnetic properties of the sintered NdFeB magnets was investigated. The results of the microstructure analysis showed that Dy-free and Dy-doped samples are composed of $Nd_2Fe_{14}B$ (P42/mnm) and a trace of Nd-rich phase. Dy addition reduces significantly the pole density factor of (004), (006) and (008) crystal faces as estimated by the Horta formula. Accordingly, the coercivity of the Dy-doped sample increases from 2038 $kA{\cdot}m^{-1}$ up to 2288 $kA{\cdot}m^{-1}$. The $H_{cj}(T)/M_s(T)$ versus $H^{min}_N/M_s(T)$ (Kronm$\ddot{u}$ller-plot) behavior shows that the nucleation is the dominating mechanism for the magnetization reversal in these two kinds of magnets, and two microstructural parameters of ${\alpha}_k$ and $N_{eff}$ are obtained. The Kronm$\ddot{u}$ller-Plot gives evidence for an increase of the ${\alpha}_k$ responsible for an increase of the coercivity as the result of the increase of the magnetic field as the magnetic domain reversed.
Keywords
sintered magnet; coercivity; nucleation mechanism;
Citations & Related Records
연도 인용수 순위
  • Reference
1 I. Wnuk and J. J. Wys ocki, J. Mater. Processing Tech. 175, 433 (2006).   DOI   ScienceOn
2 D. Goll, M. Seeger, and H. Kronmuller, J. Magn. Magn. Mater. 185, 49 (1998).   DOI   ScienceOn
3 H. Kanekiyo, M. Uehara, and S. Hirosawa, Mater. Sci. Eng. A. A181/182, 868 (1994).
4 N. J. Harrison, H. A. Davies, and I. Todd, J. Appl. Phys. 99, 08B504 (2006).   DOI
5 P. L. Wu, X. H. Li, W. Li, H. Y. Sun, Y. Chen, and X. Y. Zhang, Mater. Lett. 62, 309 (2008).   DOI   ScienceOn
6 M. X. Pan, P. Y. Zhang, X. J. Li, H. L. Ge, Q. Wu, Z. W. Jiao, and T. T. Liu, J. Rare. Earth. 28, 399 (2010).
7 X. Fang, Y. Shi, and D. C. Jiles, IEEE Trans. Magn. 34, 1291 (1998).   DOI   ScienceOn
8 S. G. Kim, M. J. Kim, K. S. Ryu, Y. B. Kim, C. S. Kim, and T. K. Kim, IEEE Trans. Magn. 36, 3316 (1999).
9 Z. W. Liu and H. A. Davies, J. Magn. Magn. Mater. 290, 1230 (2005).
10 J. Z. Han, S. Q. Liu, C. S. Wang, H. Y. Chen, H. L. Du, and Y. C. Yang, J. Magn. Magn. Mater. 321, 1331 (2009).   DOI   ScienceOn
11 S. Sugimoto, H. Murai, N. Koike, H. Nakamura, D. Book, N. Tezuka, T. Kagotani, M. Okada, M. Homma, and Inomata, J. Magn. Magn. Mater. 239, 444 (2002).   DOI   ScienceOn
12 J. Bauer, M. Seeger, A. Zern, and H. Kronmuller, J. Appl. Phys. 80, 1667 (1996).   DOI   ScienceOn
13 P. Y. Zhang, R. Hiergeist, M. Albrecht, K. F. Braun, S. Sievers, J. Ludke, and H. L. Ge, J. Appl. Phys. 106, 073904 (2009).   DOI   ScienceOn
14 H. Kronmuller, Phys. Stat. Sol. 144, 385 (1987).   DOI   ScienceOn
15 E. C. Stoner and E. P. Wohlfarth, Phil. Trans. Roy. Soc. 240, 599 (1948).   DOI
16 X. C. Kou and H. Kronmuller, J. Phys. C. 6, 6691 (1994).