• 제목/요약/키워드: microstructural factor

검색결과 87건 처리시간 0.028초

SUS-304강 용접부의 잔류응력이 피로균열진전속도에 미치는 영향 (Effect of Residual Stress on Fatigue Crack Growth Rate at Welds of SUS-304 Steel)

  • 이택순;양현태
    • Journal of Welding and Joining
    • /
    • 제15권4호
    • /
    • pp.187-193
    • /
    • 1997
  • In the weldmentsm the crack propagation rate is changed due to the residual stress. The crack propagation rate is high in the region with the residual stress. However it shows rhw same behavior with the base metal in the region that does not include the residual stress. The fatigue crack growth rate for the material with residual stresses can be predicted more precisely by using the effective stress ratio. The difference between experimental results and prediction results in the initial stage seems to be due to the redistribution of residual stresses and microstructural change.

  • PDF

The Effect of Processing Parameters on the Deposition Behavior of a Spent Fuel Surrogate in the Molten Salt Electrorefining

  • Lee, Jong-Hyeon;Kang, Young-Ho;Hwang, Sung-Chan;Kim, Eung-Ho;Yoo, Jae-Hyung
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2004년도 학술논문집
    • /
    • pp.319-329
    • /
    • 2004
  • The electrorefining experiments with an anode composed of U, Y, Gd, Nd and Ce (or U, Gd, Dy and Ce) were carried out in the KC1-LiCl eutectic melt at $500^{\circ}C$, Uranium was the major component in the cathode deposits at the high initial uranium concentration, and the separation factors of the uranium with respect to the rare earths (REs) were calculated according to the applied voltage and the uranium concentration in the molten salt. The current efficiency was inversely in proportion to the applied voltage in the range of 1.0 V to 1, 9 V (vs. STS304L). The dependency of the applied voltage on the current efficiency as well as the deposition rate was discussed in terms of the microstructural feature and crystal structure of the deposit.

  • PDF

Viscoelastic Properties of Fresh Cement Paste to Study the Flow Behavior

  • Choi, Myoungsung;Park, Kyoungsoo;Oh, Taekeun
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권sup3호
    • /
    • pp.65-74
    • /
    • 2016
  • During concrete pumping, the migration and redistribution of particles occur in a pipe and the lubrication layer that forms between the bulk concrete and the pipe wall is the governing factor determining the flow behavior. In order to identify flow behavior of pumping, in this study, the viscoelastic properties related to the microstructural behavior of a flocculated suspension were examined by using dynamic oscillatory measurements. Cement paste is assumed to be a constituent material of the lubrication layer and ten cases of mixing design are employed by changing the proportions of mineral admixtures. The relationship between the yield stress obtained from the steady shear test and the dynamic modulus resulted from the oscillatory shear measurement was derived and the implications of the correlation are discussed. Moreover, based on the investigation of the viscoelastic properties with oscillatory measurements, the initial behavior of pumped concrete was analyzed systematically.

고강도 알루미늄 합금 용접부에 있어서의 피로균열전파에 미치는 과하중 효과 (Fatigue Crack Growth Retardation after Single Overload Cycle in High Strengh Aluminium Weldments)

  • 이택순;김상태;김인식
    • Journal of Welding and Joining
    • /
    • 제6권1호
    • /
    • pp.46-52
    • /
    • 1988
  • Retardation or delay in fatigue crack growth due to overloads are important for the accurate prediction of fatigue lives of structural materials. In this study, retardation of fatigue crack growth in Al 6061-T6 weldments and heat affected zones (HAZ) after single overload cycle had been investigated. Retardation in both weldments and HAZ was observed. It was concluded that retardation in both weldment and HAZ was greater than in base metal due to microstructural change and crack branching and crack closure were major governing factor in retardation.

  • PDF

전착법에서 용액특성이 지르코니아 막형성에 미치는 영향 (Effect of Slurry Property on Preparation of Zirconia Film in Electrophoretic Deposition)

  • 김상우;이병호;손용배;송휴섭
    • 한국세라믹학회지
    • /
    • 제36권9호
    • /
    • pp.991-996
    • /
    • 1999
  • Effect of solution property on the weight varation and microstructural change of film was studied by electrophoretic deposition in order to obtain a homogeneous and dense zirconia film. As a result of weight kinetics of film which obtained in alcohol or aqueous solution having different polarity experimental data showed large deviation from theoretical ones calculated by Zhang's kinetic model. It had been shown that the weight affecting factors was largely dependent on properties other than dielectric constant and viscosity of solvent zeta potential appiled field and time. In initial stage a main factor of the drastic weight increase was the capillary drag of porous substrate. The cause of weight decrease with time in aqueous solution after 300 s was attributed to the defect of film by sagging and electrolytic reaction. The electrolyte film which prepared in alcohol solution with good wetting for substrate had better homogeneous and dense microstructure than one in aqueous solution with high surface tension.

  • PDF

Nanostructured Bulk Ceramics (Part II. Superplasticity and High Strain Rate Superplasticity)

  • Han, Young-Hwan;Mukherjee, Amiya K.
    • 한국세라믹학회지
    • /
    • 제46권4호
    • /
    • pp.345-349
    • /
    • 2009
  • In Part II, the paper will describe a three-phase alumina-based nanoceramic composite demonstrating superplasticity at a surprisingly lower temperature and higher strain rate. One important factor in the processing of these nanocomposites was the use of the electrical field assisted sintering method, SPS. These improvements in mechanical properties were briefly discussed in the context of the results from the microstructural investigations. SPS forming approach provides a new route for low temperature and high-strain-rate superplasticity for nanostructured materials and should impact and interest a broad range of scientists in materials research and superplastic forming technology.

저탄소 박판 강재의 Nd:YAG 레이저 용접부 형성에 미치는 공정변수의 영향 (Effect of Process Parameters on Bead Formation in Nd:YAG Laser Welding of Thin Steels)

  • 김기철;허재협
    • Journal of Welding and Joining
    • /
    • 제19권3호
    • /
    • pp.317-324
    • /
    • 2001
  • This study deals with high power Nd:YAG laser welding of thin steels for small pressure vessels. Full penetration welding at the overlap joint was performed so as to assure sufficient weld strength. Results showed that mid-depth weld size reduced drastically with increasing the travel speed. Position of focus had little effect on the bead formation even though short focal system was used. However, the shape factor and the bead width had closely related with the position of focus. Based on the microstructural inspection, acceptable weld was obtained when the overlap clearance was controlled up to 20% of the base metal thickness. In the case that the joint contained more clearance than the critical value, both the tensile shear strength and the tear strength were reduced. Results also demonstrated that shielding gases were proved to play a key role as far as the bead formation characteristics was taken into consideration. Blowing dry air through 5mm in diameter nozzle produced narrower bead cross-section than that of argon or nitrogen shielding.

  • PDF

420J2마르텐사이트 스테인레스강의 최종경도에 미치는 열처리조건의 영향 (Effect of Heat Treatments on the Final Hardness of STS 420J2 Martensitic Stainless Steel)

  • 김기돈;성장현
    • 열처리공학회지
    • /
    • 제7권3호
    • /
    • pp.175-183
    • /
    • 1994
  • The effect of batch annealing conditions and austenitizing temperatures on the hardness and microstructural factors were examined by using 420J2 martensitic stainless steel. In spite of the similler hardness after batch annealing, the difference in hardness at the same austenitizing temperature was caused by changes in dissolved carbon during batch annealing. The highest hardness of the specimen was obtained at the batch annealing temperature of $820^{\circ}C$ and austenitizing temperature of $1050^{\circ}C$. The main factor affecting the final hardness of the cold annealed 420J2 specimen was proved to the austenitizing temperature rather than batch annealing temperature.

  • PDF

Attrition milling법에 의해 제조된 PNW-PMN-PZT 세라믹스의 유전 및 압전 특성

  • 오영광;류주현;윤현상;정영호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 춘계학술회의 초록집
    • /
    • pp.6-6
    • /
    • 2010
  • In this study, microstructural and piezoelectric characteristics of PNW-PMN-PZT ceramics manufactured using attrition milling method were investigated. Sintering temperature of the ceramics was varied from $980^{\circ}C$ to $1100^{\circ}C$. At the specimen sintered at $1100^{\circ}C$, mechanical quality factor(Qm) and dielectric constant showed the maxinum values of 2,373 and 1438, respectively. At the specimen sintered at $1080^{\circ}C$, electromechanical coupling factot(kp) also showed the maxinum value of 0.524.

  • PDF

니켈계 용사층의 조직 및 열피로 특성 (Microstructure and Thermal Fatigue Properties of Flame-Sprayed Nickel-Based Coatings)

  • 김형준;권영각
    • 한국표면공학회지
    • /
    • 제29권3호
    • /
    • pp.163-175
    • /
    • 1996
  • Flame-sprayed Ni-based coatings are investigated in order to improve the thermal fatigue properties of gray cast iron in the presence of water spraying. The results of thermal cycling tests from room temperature to $1100^{\circ}C$ indicate that thermal fatigue endurance is increased in the order of Ni-20%Cr, NiCr-6%Al, and Ni-5%Al. The thermal fatigue failure is caused by the formation of iron oxides between the coating and the substrate and then the thermal fatigue cracks have propagated either along the brittle iron oxide layer resulting in the spatting of the coatings in case of Ni-5%Al and NiCr-6%Al coatings or to the substrate resulting in the whole specimen fracture in case of Ni-20%Cr coating. It seems that the most governing factor for thermal fatigue resistance is the thermal expansion coefficient difference between the coating and the substrate. Microstructural variations before and after the tests are also discussed.

  • PDF