Browse > Article
http://dx.doi.org/10.4191/KCERS.2009.46.4.345

Nanostructured Bulk Ceramics (Part II. Superplasticity and High Strain Rate Superplasticity)  

Han, Young-Hwan (National Core Research Center for Hybrid Materials Solution, Pusan National University)
Mukherjee, Amiya K. (Department of Chemical Engineering and Materials Science, University of California at Davis)
Publication Information
Abstract
In Part II, the paper will describe a three-phase alumina-based nanoceramic composite demonstrating superplasticity at a surprisingly lower temperature and higher strain rate. One important factor in the processing of these nanocomposites was the use of the electrical field assisted sintering method, SPS. These improvements in mechanical properties were briefly discussed in the context of the results from the microstructural investigations. SPS forming approach provides a new route for low temperature and high-strain-rate superplasticity for nanostructured materials and should impact and interest a broad range of scientists in materials research and superplastic forming technology.
Keywords
Alumina-based; Superplasticity; HSRS; SPS; Nanoconcomposite;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 C. C. Anya, 'Hertzian Flaw Analysis and Models for the Prediction of Flexural Fracture Strength of $Al_2O_3$ and $Al_2O_3$/ SiC Nanocomposites,' J. Mater. Sci., 34 5557-67 (1999)   DOI   ScienceOn
2 W. Z. Zhu, J. H. Gag, and Z. S. Ding, 'Microstructure and Mechanical Properties of a $Si_3N_4/Al_2O_3$ Nanocomposite,' Mater. Sci., 32 537-42 (1997)   DOI   ScienceOn
3 G. D. Zhan, J. Kuntz, J. Wan, J. Garay, and A. K. Mukherjee, 'A Novel Processing Route to Develop a Dense Nanocrystalline Alumina Matrix (100 nm) Nanocomposites Material,' J. Am. Ceram. Soc., 86 200-2 (2002)   DOI   ScienceOn
4 E. Flahaut, A. Peigney, C. Laurent, C. Marliere, F. Chastel, and A. Rousset, 'Carbon Nanotube-metal-oxide Nanocomposites: Microstructure, Electrical Conductivity and Mechanical Properties,' Acta Mater., 48 3803-12 (2000)   DOI   ScienceOn
5 X. Zhou, D.M. Hulbert, J.D. Kuntz, R.K. Sadangi, V. Shukla, B.H. Kear, and, A.K. Mukherjee, 'Superplasticity of Zirconia-alumina-spinel Nanoceramic Composite by Spark Plasma Sintering of Plasma Sprayed Powders,' Mater. Sci. Eng. A, 394 353-59 (2005)   DOI   ScienceOn
6 J.D. Kuntz, G.-D. Zhan, and A. K. Mukherjee, 'Nanocrystalline-Matrix Ceramic Composites for Improved Fracture Toughness,' MRS Bulletin, January, 22-7 (2004)   DOI
7 H. Kokawa, T. Watanabe, and S. Karashima, "Sliding Behavior and Dislocation Structures in Aluminum Grain Boundaries," Phil. Mag. A, 44 1239-54 (1981)   DOI   ScienceOn
8 Y. Ji and J. A. Yeomans, 'Processing and Mechanical Properties of $Al_2O_3-5$ vol.% Cr Nanocomposites,' J. Euro. Ceramic Soc., 22 1927-36 (2002)   DOI   ScienceOn
9 T. Sekino and K. Niihara, 'Microstructural Characteristics and Mechanical Properties for $Al_2O_3$/metal Nanocomposites,' Nanostr. Mater., 6 663-66 (1995)   DOI   ScienceOn
10 R. W. Davidge, R. J. Brook, F. Cambier, M. Poorteman, A. Leriche, D. O'Sullivan, S. Hampshire, and T. Kennedy, 'Fabrication, Properties, and Modelling of Engineering Ceramics Reinforced with Nanoparticles of Silicon Carbide,' British Ceramic Transactions, 96 121-27 (1997)
11 T. Ohji, J. Young-Keun, C. Yong-Ho, and K. Niihara, 'Strengthening and Toughening Mechanisms of Ceramic Nanocomposites,' J. Am. Ceramic Soc., 81 1453-61 (1998)   DOI   ScienceOn
12 S. Bhaduri and S. B. Bhaduri, 'Enhanced Low Temperature Toughness of $Al_2O_3-ZrO_2$ Nano-nano Composites,' Nanostr. Mater., 8 755-63 (1997)   DOI   ScienceOn
13 I.-W. Chen and L.A. Xue, 'Development of Superplastic Structural Materials,' J. Am. Ceram. Soc., 73 2585-609 (1990)   DOI
14 J.D. Kuntz, J. Wan, and A. K. Mukherjee, unpublished results
15 X. Zhou, D. M. Hulbert, J.D. Kuntz, J.E. Garay, and A.K. Mukherjee, 'Superplasticity of the Nanostructured Binary Systems of Zirconia-Alumina-Spinel Ceramics by Spark Plasma Sintering Process,' Adv. Ceramic Matrix Composites, 155-64 (2004)
16 I. Levin, W. D. Kaplan, D. G. Brandon, and A. A. Layyous, 'Effect of SiC Submicrometer Particle Size and Content on Fracture Toughness > of Alumina.SiC Nanocomposites,' J. Am. Ceramic Soc., 78 254-57 (1995)   DOI   ScienceOn
17 T. Sekino, T. Nakajima, S. Ueda, and K. Niihara, 'Reduction and Sintering of a Nickel-dispersed-alumina Composite and its Properties,' J. Am. Ceramic Soc., 80 1139-49 (1997)   DOI   ScienceOn
18 S. T. Oh, T. Sekino, and K. Niihara, 'Fabrication and Mechanical Properties 5 Vol% Copper Dispersed Alumina Nanocomposite,' J. Euro. Ceramic Soc., 18 31-7 (1998)   DOI   ScienceOn
19 R. W. Siegel, S. K. Chang, B. J. Ash, J. Stone, P. M. Ajayan, R. W. Doremus, and L. S. Schadler, 'Mechanical Behavior of Polymer and Ceramic Matrix Nanocomposites,' Scripta Mater., 44 2061-64 (2001)   DOI   ScienceOn
20 S. Maensiri and S. G. Roberts, "Thermal Shock of Ground and Polished Alumina and $Al_2O_3$/SiC Nanocomposites," J. Euro. Ceramic Soc., 22 2945-56 (2002)   DOI   ScienceOn