• Title/Summary/Keyword: microsomes

Search Result 264, Processing Time 0.032 seconds

Mechanism of Phenoxy Compounds as an Endocrine Disrupter (Phenoxy계 화합물의 내분비장애작용 검색 및 기전연구)

  • 김현정;김원대;권택헌;김동현;박영인;동미숙
    • Toxicological Research
    • /
    • v.18 no.4
    • /
    • pp.331-339
    • /
    • 2002
  • Phenoxy compounds, 2,4-Dichlorophenol acetoxy acid (2,4-D) and 2,4-dichlorophenol (DCP), are widely used as a hormonal herbicide and intermediate for pesticide manufacturing, respectively. In order to assess the potential of these compounds as endocrine disruptors, we studied the androgenicity of them wing in vivo and in vitro androgenicity assay system. Administration of 2,4-D (50 mg/kg/day, p.o.) or DCP (100 mg/kg/day, p.o.) to rats caused an increase in the tissue weight of ventral prostate, Cowpers gland and glands penis. These increase of androgen-dependent tissues were additively potentiated when rats were simultaneously treated with low dose of testosterone (1 g/kg, s.c.). 2,4-D increased about 350% of the luciferase activity in the PC cells transiently cotransfected phAR and pMMTV-Luc at concentration of $10^{-9}$ M. In 2,4-D or DCP-treated castrated rats, testosterone 6$\beta$-hydroxylase activity was not significantly modulated even when rats were co-treated with testosterone. In vitro incubation of 2,4-D and DCP with microsomes at 50 $\mu$M inhibited testosterone 6$\beta$-hydroxylase activity about 27% and 66% in rat liver microsomes, about 44% and 54% in human liver microsomes and about 50% and 45% in recombinant CYP3A4 system, respectively. The amounts of total testosterone metabolites were reduced about 33% and 75% in rat liver microsomes, 69% and 73% in human liver microsomes and 54% and 64% in recombinant CYP3A4 by 2,4-D or DCP, respectively. Therefore, the additive androgenic effect of 2,4-D or DCP by the co-administration of the low dose of testosterone may be due to the increased plasma level of testosterone by inhibiting the cytochrome P450-mediated metabolism of testosterone. These results collectively suggested that 2,4-D and DCP may act as androgenic endocrine disrupter by binding to the androgen receptor as well as by inhibiting the metabolism of testosterone.

Inhibitory Effect of Licorice Ethanol Extracts and Glycyrrhizin on Cytochrome P450 Drug-Metabolizing Enzymes in Human Liver Microsomes (감초 물 추출물 및 Glycyrrhizin이 인체 간 Microsome에서 Cytochrome P450 약물대사효소에 미치는 영향)

  • Park Jong-Hoon;Park Ji-Young;Ju Young-Sung
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.7 no.2
    • /
    • pp.65-74
    • /
    • 2003
  • Objective : The aim of present study is to evaluate the inhibitory potential of licorice extract and glycyrrhizin on cytochrome P450(CYP) in human liver microsomes. Methods : Using human liver microsomes, water extract of licorice and glycyrrhizin as an inhibitor were co-incubated with each probe drug representing selective CYP isoform activity. We measured relative metabolic activity in incubation condition compared to that with no extract of licorice using HPLC system. Results : Both water extracts of licorice and glycyrrhizin showed inhibitory effect on CYP-catalyzed reactions. CYP2C19 $(IC_{50}=126.7{\mu}g/ml)$ is most potently inhibited by water extract than other tested CYP isoforms$(IC_{50}>450{\mu}g/ml)$, but glycyrrhizin exhibited potent inhibition on CYP1A2$(IC_{50}=106.9{\mu}g/ml)$ followed by CYP2C9 and CYP2D6. Conclusion: These results indicate that water extract of licorice and glycyrrhizin have inhibitory potential on CYP-catalyzed reaction in human liver microsomes. But the mechanism of inhibition was slightly different between them Water extract of licorice mainly inhibited CYP2C19, and glycyrrhizin primarily inhibited CYP1A2. The inhibition by water extract of licorice and glycyrrhizin on CYP isoforms may cause drug interaction with co-administered drug leading to toxicity or treatment failure.

  • PDF

In Vitro Metabolism of a New Neuroprotective Agent, KR-31543 in the Human Liver Microsomes : Identification of Human Cytochrome P450

  • Ji, Hye-Young;Lee, Seung-Seok;Yoo, Sung-Eun;Kim, Hosoon;Lee, Dong-Ha;Lim, Hong;Lee, Hye-Suk
    • Archives of Pharmacal Research
    • /
    • v.27 no.2
    • /
    • pp.239-245
    • /
    • 2004
  • KR-31543, (2S,3R,4S)-6-amino-4-[N-(4-chlorophenyl)-N-(2 -methyl-2H-tetrazol-5-ylmethyl) amino]-3,4-dihydro-2-dimethoxymethyl-3-hydroxy-2-methyl-2H-1-benzopyran, is a new neuroprotective agent for preventing ischemia-reperfusion damage. This study was performed to identify the metabolic pathway of KR-31543 in human liver microsomes and to characterize cytochrome P450 (CYP) enzymes that are involved in the metabolism of KR-31543. Human liver microsomal incubation of KR-31543 in the presence of NADPH resulted in the formation of two metabolites, M1 and M2. M1 was identified as N-(4-chlorophenyl)-N-(2-methyl-2H-tetrazol-5-ylmethyl)amine on the basis of LC/MS/MS analysis with a synthesized authentic standard, and M2 was suggested to be hydroxy-KR-31543. Correlation analysis between the known CYP enzyme activities and the rates of the formation of M 1 and M2 in the 12 human liver microsomes have showed significant correlations with testosterone 6$\beta$-hydroxylase activity (a marker of CYP3A4). Ketoconazole, a selective inhibitor of CYP3A4, and anti-CYP3A4 monoclonal antibodies potently inhibited both N-hydrolysis and hydroxylation of KR-31543 in human liver microsomes. These results provide evidence that CYP3A4 is the major isozyme responsible for the metabolism of KR-31543 to M1 and M2.

Role of Cytochrome P-450 in the Bioactivation of Nicotine

  • Kim, Bong-Hee;Anthony Travor
    • Archives of Pharmacal Research
    • /
    • v.14 no.2
    • /
    • pp.130-136
    • /
    • 1991
  • Nicotine (100 .mu. M) was incubated with microsomes (1 mg/ml) prepared from New Zealand White rabbits. On the basis of microsomal weight, the rate of nicotine oxidation were calculated on the basis of cytochrome P-450 concentration, the specific activity of the metabolic oxidation catalyzed by lung was approximately 4 times greater than liver (6.4 vs 1, 65 nmoles nicotine oxidized. nmole cytochrome $P-450^{-1}\;min{-1})$. These studies employed several methods of altering activities of specific isozymes present in pulmonary microsomes, including the use of the isozyme2 and 6 specific inhibitor $\alpha$-methylbenzyl ABT, metabolite inhibitors, norbenzphetamine and N-hydroxyamphetamine. TCDD induction and Arochlor 1260 pretreatment. These results support the conclusion that nicotine metabolism by rabbit lung microsomes is mediated primarily by cytochrome P-450 isozyme 2.

  • PDF

Antioxidant Constituents from Setaria viridis

  • Kwon, Yong-Soo;Kim, Eun-Young;Kim, Won-Jun;Kim, Woo-Kyung;Kim, Chang-Min
    • Archives of Pharmacal Research
    • /
    • v.25 no.3
    • /
    • pp.300-305
    • /
    • 2002
  • The EtOAc and n-BuOH soluble fractions from the aerial part of Setaria viridis showed a strong free radical scavenging activity. Six major compounds were isolated from these fractions. They were identified by spectral data as tricin (1), p-hydroxycinnamic acid (2), vitexin 2"-Ο-xyloside (3), orientin 2"-Ο-xyloside (4), $tricin-7-Ο-{\beta}-D-glucoside$ (5) and vitexin 2"-Ο-glucoside (6). Among these compounds, 4 and 5 exhibited strong free radical scavenging activities on 1, 1-diphenyl-2-picrylhydrazyl (DPPH). We further studied the effects of these isolated compounds on the lipid peroxidation in rat liver microsomes induced by non-enzymatic method. As expected, 4 and 5 exhibited significant inhibition on $ascorbic/Fe^{2-}$ induced lipid peroxidation in rat liver microsomes.ver microsomes.

The Mode of the Activity of Naturally Occurring Furanocoumarins on Hepatic Cytochrome P-450 Enzyme System (천연 Furanocoumarin 유도체들이 간의 Cytochrome P-450 효소계에 미치는 작용기전)

  • Shin, Kuk-Hyun;Woo, Won-Sick
    • Korean Journal of Pharmacognosy
    • /
    • v.21 no.1
    • /
    • pp.74-82
    • /
    • 1990
  • The effects of naturally occurring furanocoumarins on cytochrome P-450 have been investigated in rat liver microsomes. Incubation of microsomes with an NADPH-generating system and four furanocoumarins such as imperatorin, isoimperatorin, phellopterin and byakangelicin at $37^{\circ}$ in vitro resulted in a significant destruction of cytochrome P-450. A single treatment(50 mg/kg, i.p.) of rats with each furanocoumarin caused a rapid loss of cytochrome P-450 accompanied by the loss of heme from the microsomes but not by the loss of cytochrome $b_5$. It is suggested that cytochrome P-450 is specifically destroyed by furanocoumarins in a metabolic process involving destruction of its heme group and as a consequence, hepatic enzyme activities are depressed markedly.

  • PDF

Characterization of Pyribenzoxim Metabolizing Enzymes in Rat Liver Microsomes

  • Liu Kwang-Hyeon;Moon Joon-Kwan;Seo Jong-Su;Park Byeoung-Soo;Koo Suk-Jin;Lee Hye-Suk;Kim Jeong-Han
    • Toxicological Research
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • The primary metabolism of pyribenzoxim was studied in rat liver microsomes in order to identify the cytochrome P450 (CYP) isoform(s) and esterases involved in the metabolism of pyribenzoxim. Chemical inhibition using CYP isoform-selective inhibitors such as ${\alpha}$-naphthoflavone, tolbutamide, quinine, chlorzoxazone, troleandomycin, and undecynoic acid indicated that CYP1A and CYP2D are responsible for the oxidative metabolism of pyribenzoxim. And inhibitory studies using eserine, bis-nitrophenol phosphate, dibucaine, and mercuric chloride indicated pyribenzoxim hydrolysis involved in microsomal carboxylesterases containing an SH group (cysteine) at the active center.

Inhibitory effect of honokiol and magnolol on cytochrome P450 enzyme activities in human liver microsomes

  • Joo, Jeongmin;Liu, Kwang-Hyeon
    • Mass Spectrometry Letters
    • /
    • v.4 no.2
    • /
    • pp.34-37
    • /
    • 2013
  • Honokiol and magnolol, the major bioactive neolignans of magnolia officinalis, are the most important constituents of the crude drug prescriptions that are used in the therapy of neuroses and various nervous disorders. There have been limited reports on the effects of neolignoid compounds on human cytochrome P450 activity. Therefore, the inhibitory effects of honokiol and magnolol on seven human cytochrome P450 s were evaluated in human liver microsomes. Honokiol and magnolol showed the most potent inhibition of CYP1A2-mediated phenacetin O-deethylase activity ($IC_{50}$ values of 3.5 and 5.4 mM, respectively) among the seven P450s tested. These in vitro data indicate that neolignan compounds can inhibit the activity of CYP1A2 and suggest that these compounds should be examined for potential pharmacokinetic drug interactions in vivo.

Biotransformation of Tranylcypromine in Rat Liver Microsomes

  • Kang, Gun-Il;Hong, Suk-Kil
    • Archives of Pharmacal Research
    • /
    • v.11 no.4
    • /
    • pp.292-300
    • /
    • 1988
  • Metabolism of tranylcypromine (TCP) in rat liver microsomes was studied in vitro using fortified microsomal preparations. As well as unlabeled TCP, two deuterium labeled analogs, TCP-phenyl-$d_{5}$ and TCP-cyclopropyl-$d_{2}$ were used and GC/MS employed which was then metabolized to cinnamaldehyde and hydrocinnamyl alcohol. Schiff bases of TCP with hydrocinnamaldehyde and acetaldehyde were detected and possibility of the metabolic formation of N-ethylidene TCP was proposed. In addition, acetophenone (benzoylacetic acid), benzaldehyde, benzoic acid, and benzyl alcohol were detected as the metabolites. Chemical decomposition studies suggested that parts of the oxidized products might be derived by air oxidation processes. A potential metabolite assumed to be N-ethylidene-1, 2-dihydroxy-3-phenylpropanamine oxide was also detected.

  • PDF

In vitro metabolism of a new protective agent, KR-31543 in human liver microsomes

  • Ji, Hye-Young;Kim, Sook-Jin;Lee, Hong-Il;Lee, Seung-Seok;Lee, Dong-Ha;Lim, Hong;Lee, Hye-Suk
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.286.2-287
    • /
    • 2003
  • The purpose of this paper was to identify the metabolic pathway of a new neuroprotective agent, KR-31543 for ischemia-reperfusion damage in human liver microsomes and characterize cytochrome P450 (CYP) enzymes involved in the in vitro metabolism of KR-31543 generates two metabolites in human liver microsomes : M1, N-(4-chlorophenyl)-N-(2-methyl-2H-tetrazol-5-ylmethyl)amine and M2, hydroxy-KR-31543. (omitted)

  • PDF