• Title/Summary/Keyword: microscopy analysis

Search Result 2,696, Processing Time 0.035 seconds

A Glance of Electron Tomography through 4th International Congress on Electron Tomography (International Congress on Electron Tomography에 대한 간략한 이해와 현황)

  • Rhyu, Im-Joo;Park, Seung-Nam
    • Applied Microscopy
    • /
    • v.38 no.3
    • /
    • pp.275-278
    • /
    • 2008
  • Electron tomography (ET) is an electron microscopic technique for obtaining a 3-D image from any electron microscopy specimen and its application in biomedical science has been increased thanks to development of electron microscopy and related technologies during the last decade. There are few researches on ET in Korea during this period. Although the importance of ET has been recognized recently by many researchers, initial approach to electron tomographic research is not easy for beginners. The 4th International Congress on Electron Tomography (4 ICET) was held on Nov $5{\sim}8$, 2006, at San Diego. The program dealt instrumentation, reconstruction algorithm, visualization/quantitative analysis and electron tomographic presentation of biological specimen and nano particles. 1 have summarized oral presentations and analyzed the posters presented on the meeting. Cryo-electron microscopic system was popular system for ET and followed conventional transmission electron microscopic system. Cultured cell line and tissue were most popular specimens analyzed and microorganisms including bacteria and virus also constituted important specimens. This analysis provides a current state of art in ET research and a guide line for practical application of ET and further research strategies.

On-Site Corrosion Behavior of Water-Treated Boiler Tube Steel

  • Seo, Junghwa;Choi, Mihwa;He, Yinsheng;Yang, Seok-Ran;Lee, Je-Hyun;Shin, Keesam
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.177-182
    • /
    • 2015
  • The boiler tubes of X20CrMoV12.1 used in fossil-fired power plants were obtained and analyzed for the effect of water treatment on the steam corrosion-induced oxide scale in an effort to better understand the oxide formation mechanism, as well as pertinent method of maintenance and lifetime extension. The specimens were analyzed using various microscopy and microanalysis techniques, with focuses on the effect of water treatment on the characters of scale. X-ray diffraction analysis showed that the scales of specimens were composed of hematite ($Fe_2O_3$), magnetite ($Fe_3O_4$), and chromite ($FeCr_2O_4$). Electron backscatter diffraction analysis showed that the oxides were present in the following order on the matrix: outer $Fe_2O_3$, intermediate $Fe_3O_4$, and inner $FeCr_2O_4$. After all volatile treatment or oxygenated treatment, a dense protective $Fe_2O_3$ layer was formed on the $Fe_3O_4$ layer of the specimen, retarding further progression of corrosion.

A Study on the Method of Transferring Metal Specimens for Real-time Transmission Electron Microscopy using Ultrasonic Treatment (초음파 처리 활용 실시간 투과전자현미경 관찰용 금속 시편 전사 방법에 관한 연구)

  • H. Kim
    • Transactions of Materials Processing
    • /
    • v.33 no.2
    • /
    • pp.118-122
    • /
    • 2024
  • Micro-electromechanical systems (MEMS) based in-situ heating holders have been developed to enable high resolution imaging of heat treatment analysis. However, unlike the standard 3 mm metal disk specimens used in the furnace-based heating holder and general transmission electron microscopy holder, the MEMS-based in-situ heating holder requires thin specimens that can be penetrated by electrons to be transferred onto the MEMS chip. Previously, focused ion beam milling was used to transfer metal specimens, but it has the disadvantage of being expensive and the risk of specimen damage due to gallium ions. Therefore, in this study, we devised a method of transferring metallic materials by ultrasonic treatment using a transmission electron microscopy specimen made by electro jet polishing. A 3mm electropolished metal disk was placed in an appropriate solution, ultrasonicated, and then drop casted. The transfer of the specimen was successful, but it was confirmed that dislocations were formed inside the specimen due to ultrasonic treatment. This study provides a novel method for transferring metallic materials onto MEMS chips, which is cost-effective and less gallium ion damaging to the specimen. The results of this study can be used to improve the efficiency of heat treatment analysis using MEMS-based in-situ heating holders.

Association of Aster Yellow Phytoplasma with Witches' Broom Disease of Ash (Fraxinus rhynchophylla Hence) in Korea

  • Han, Sang Sub
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.2 s.159
    • /
    • pp.103-107
    • /
    • 2005
  • Typical phytoplasma whiches' broom symptoms were observed in Ash (Fraxinus rhynchophylla Hence) in Korea. The symptoms of the disease were showing abnormally small leaves, shorted internodes and proliferation of shoots. Examination of fluorescent and electron microscopy of leaf midribs revealed numerous phytoplasma bodies localized in the phloem tube cells. The phytoplasmas were detected in all the symptomatic samples by the amplification with phytoplasma specific primer pair P1/P7 consistently, and the expected size was 1.8 kb. However, the phytoplasma DNA was not detected in healthy seedlings. Based on sequence analysis of amplified region, this phytoplasma has close homologies with eqilodium phyllody, mulberry dwarf, and aster yellow phytoplasmas, 99.95%, 99.79% and 99.78%, respectively, This phylogetic analysis indicates that ash witches' broom phytoplasma should be classified in the aster yellow group 16SrVI and clearly distinct from the ash yellow group 16SrVII.

Isolation of Listeria monocytogenes by Immunomagnetic Separation and Atomic Force Microscopy

  • Mercanolu, Birce;Aykut, S.;Ergun, M.Ali;Tan, Erdal
    • Journal of Microbiology
    • /
    • v.41 no.2
    • /
    • pp.144-147
    • /
    • 2003
  • Listeria monocytogenes is a pathogen of major concern to the food industry and the potential cause of severe infections such as listeriosis. Early detection of this foodborne pathogen is important in order to eliminate its potential hazards. So, immunomagnetic separation (IMS) has been suggested as a means of reducing the total analysis time and for improving the sensitivity of detection. Atomic force microscopy (AFM) has been used for measuring the topographic properties of sample surfaces at nanometer scale. In this study, we used AFM to confirm both the sensitivity and the specificity of IMS. Regarding AFM analysis, the length and the width of the bacteria, which were in agreement with literature values, were found to be 2.993 $\mu\textrm{m}$ and 0.837 $\mu\textrm{m}$, respectively. As a result, AFM helped us both characterize and measure the bacterial and bead structures.

Surface modification of graphene oxide by citric acid and its application as a heterogeneous nanocatalyst in organic condensation reaction

  • Maleki, Ali;Hajizadeh, Zoleikha;Abbasi, Hamid
    • Carbon letters
    • /
    • v.27
    • /
    • pp.42-49
    • /
    • 2018
  • A citric acid functionalized graphene oxide nanocomposite was successfully synthesized and the structure and morphology of the nanocatalyst were comprehensively characterized by Fourier transform infrared spectroscopy, energy-dispersive X-ray analysis, X-ray diffraction patterns, atomic force microscopy images, scanning electron microscopy images, transmission electron microscopy images, and thermogravimetric analysis. The application of this nanocatalyst was exemplified in an important condensation reaction to give imidazole derivatives in high yields and short reaction times at room temperature. The catalyst shows high catalytic activity and could be reused after simple work up and easy purification for at least six cycles without significant loss of activity, which indicates efficient immobilizing of citrate groups on the surface of graphene oxide sheets.

Electron Holography of Advanced Nanomaterials

  • Shindo, D.;Park, H.S.;Kim, J.J.;Oikawa, T.;Tomita, T.
    • Applied Microscopy
    • /
    • v.36 no.spc1
    • /
    • pp.63-69
    • /
    • 2006
  • By utilizing a field emission gun and a biprism installed on a transmission electron microscope (TEM), electron holography is extensively carried out to visualize the electric and magnetic fields of nanomaterials. In the electric field analysis, the distribution of electric potential in a sharp tip made of W coated with $ZrO_2$ is visualized by applying the voltage to the tip. Denser contour lines due to the electric potential are observed with an increase in the bias voltage. In the magnetic field analysis by producing the strong magnetic field with a sharp magnetic needle made of a permanent magnet, the in situ experiment is carried out to investigate the magnetization of hard magnetic materials. The results of these experiments clearly demonstrate that electron holography is a promising advanced transmission electron microscopy technique to characterize the electric and magnetic properties of nanomaterials.

Characterization of O2 ionosorption induced potential changing property of SnO2 nanowire with Kelvin force microscopy (KFM)

  • Heo, Jinhee;Won, Soonho
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.359-362
    • /
    • 2012
  • We have employed Kelvin force microscopy (KFM) system to measure the potential change of a single SnO2 nanowire which had been synthesized on the Au thin film by a thermal process. By using the KFM probing technique, Rh coated conducting cantilever can approach a single SnO2 nanowire in nano scale and get the potential images with oscillating AC bias between Au electrode and cantilever. Also, during imaging the potential status, we controlled the concentration of oxygen in measuring chamber to change the ionosorption rate. From the results of such experiments, we verified that the surface potential as well as doping type of a single SnO2 nanowire could be changed by oxygen ionosorption.

Characterization of Worker Exposure to Airborne Asbestos in Asbestos Industry (석면취급 사업장 근로자의 석면폭로 특성에 관한 연구)

  • Paik, Nam Won;Lee, Young Hwan
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.1 no.2
    • /
    • pp.144-153
    • /
    • 1991
  • This study was conducted to evaluate worker exposure to airborne asbestos fibers by industry, and to evaluate polarized-light microscopy for determining airborne asbestos fibers. A total of 11 plants including asbestos textile, brake-lining manufacturing, slate manufacturing, and automobile maintenance shops were investigated. Rsults of the study are summarized as follows. 1. Worker exposure levels to airborne asbestos fibers were the highest in asbestos textile industry, followed by brake-lining manufacturing, slate manufacturing, and automobile maintenance shops, in order. In asbestos textile industry, large variation of asbestos levels was found by plants. The worst plant indicated airborne fiber concentrations in excess of 10 fibers/cc, however, the best plant showed concentrations within 0.50 fibers/cc. 2. Characterization of airborne fibers by industry indicated that fibers from asbestos textile industry were the longest with the largest aspect ratio. Fibers from automobile maintenance shops were the shortest with the smallest aspect ratio. Based on characteristics of fibers and the highest levels of concentrations, it is concluded that workers in the asbestos textile industry are exposed to the highest risk of producing asbestosis, lung cancer, and mesothelioma. 3. Result s obtained using polarized-light microscopy were $43.7{\pm}12.3%$ of the results obtained using phase contrast microscopy. This may be resulted from the worse resolution of polarized-light microscopy than that of phase contrast microscopy. Based on the results, it is recommended that polarized-light microscopy be used for mainly bulk sample analyses and further study be performed to improve the method for determining airborne samples. However, polarized-light microscopy can be used for determining thick fibers.

  • PDF

Transmission Electron Microscopy Study of Stacking Fault Pyramids Formed in Multiple Oxygen Implanted Silicon-on-Insulator Material

  • Park, Ju-Cheol;Lee, June-Dong;Krause, Steve J.
    • Applied Microscopy
    • /
    • v.42 no.3
    • /
    • pp.151-157
    • /
    • 2012
  • The microstructure of various shapes of stacking fault pyramids (SFPs) formed in multiple implant/anneal Separation by Implanted Oxygen (SIMOX) material were investigated by plan-view and cross-sectional transmission electron microscopy. In the multiple implant/anneal SIMOX, the defects in the top silicon layer are confined at the interface of the buried oxide layer at a density of ${\sim}10^6\;cm^{-2}$. The dominant defects are perfect and imperfect SFPs. The perfect SFPs were formed by the expansion and interaction of four dissociated dislocations on the {111} pyramidal planes. The imperfect SFPs show various shapes of SFPs, including I-, L-, and Y-shapes. The shape of imperfect SFPs may depend on the number of dissociated dislocations bounded to the top of the pyramid and the interaction of Shockley partial dislocations at each edge of {111} pyramidal planes.