• Title/Summary/Keyword: microscopic traffic simulation

Search Result 106, Processing Time 0.033 seconds

Improvement of ATIS Model Performance under Connected Vehicle Environment

  • Kim, Hoe-Kyoung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.4
    • /
    • pp.10-18
    • /
    • 2012
  • This paper develops a decentralized advanced traveler information system (ATIS) under the connected vehicle environment, recently regarded as one of most promising tools in Intelligent Transportation Systems (ITS). The performance of the proposed ATIS is reinforced by introducing autonomous automatic incident detection (AAID) function. The proposed ATIS is implemented and tested using an off-the-shelf microscopic simulation model (VISSIM) on a simple traffic network under idealized communication conditions. A key attribute of this experiment is the inclusion of a non-recurrent traffic state (i.e., traffic incident). Simulation results indicate that the ATIS using V2V communication is efficient in saving drivers' travel time and AAID plays an important role in improving the effectiveness of the system.

A Study on the Operation Boundary of Ramp Metering System (진입제어 전략 적용 시 적정 운영영역 설정에 관한 연구)

  • Kim, Kyu-Ok;Park, Joon-Hyeong;Park, Ji-Eun;Shin, Hee-Cheol
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.2
    • /
    • pp.9-21
    • /
    • 2011
  • The ramp metering strategy is one of the effective ways to solve the freeway traffic congestion in peak time periods. The study was initiated with assurance that the traffic conditions of ramp and mainline that mitigate the congestion would exist. Under the moderate traffic volume levels, ramp metering is expected to improve the quality of freeway operation. To derive a range of traffic condition, three operation strategies(Do nothing, ramp metering, minimum ramp control) were set up and the ALINEA algorithm was implemented with microscopic traffic simulator "VISSIM". The volumes of mainline and ramp are key parameters for the simulation scenarios. Measures of effectiveness for the study include mainline density and average vehicle speed. Operation boundaries in terms of traffic volume were proposed for operating ramp metering strategy. The results show that under the proposed traffic conditions the ramp metering was more successful to increase average vehicle speeds. Traffic controls under the operation boundaries of traffic levels give significant effects for density and average vehicle speed. The outcomes of this study would be useful to improve the performance of ramp metering strategies.

Development of Lane-changing Model for Two-Lane Freeway Traffic Based on CA (Cellular Automata 기반 2차로 고속도로 차로변경모형 개발)

  • Yoon, Byoung Jo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3D
    • /
    • pp.329-334
    • /
    • 2009
  • The various behaviors of vehicular traffic flow are generated through both car-following and lane-changing behaviors of vehicles. Especially lane-usage varies by lane-changing behaviors. In the area of microscopic vehicle simulation, a lane-changing model connected to a car-following model parallel is essential to generate both various traffic flows relationships and laneusages. In Korea, some studies on car-following models have been reported, but few studies for lane-changing models stay in the beginning stage. In this paper, a two-lane changing model for the simulation modeling of large freeway network is introduced. The lane-changing model is developed based on CA (Cellular Automata) model. The developed model is parallel combined with an existing CA car-following model and tested on a closed link system. The results of simulation show that the developed model generates the various behaviors of lane usage, which existing CA lane-changing models could not generate. The presented model is expected to be used for the simulation of more various freeway traffic flows.

Measurement of Effectiveness of Signal Optimized Roundabout (회전교차로의 접근로 신호최적화를 통한 도입효과 분석)

  • Eom, Jeong Eun;Jung, Hee Jin;Bae, Sang Hoon
    • International Journal of Highway Engineering
    • /
    • v.17 no.1
    • /
    • pp.91-98
    • /
    • 2015
  • PURPOSES : Although signalized intersections have been considered the best way to control traffic volume in urban areas for several decades, roundabouts are currently being discussed as an alternative way to control traffic volume, especially when traffic is light. Because a roundabout's efficiency depends on the load geometry as well as the traffic volume, design guidelines for roundabouts are recommended only if the incoming traffic volume is very low. It is rare to substitute a roundabout for an existing signalized intersection in urban areas. This study aims to estimate the benefits from the transformation of an existing signalized intersection into a roundabout in an urban area. When there is a more moderate volume of traffic, roundabouts can be effectively used by optimizing signals located at an approaching roadway. METHODS : The methodologies of this paper are as follows: First, a signalized intersection was analyzed to determine the traffic characteristics. Second, the signalized intersection was transformed into a roundabout using VISSIM microscopic traffic simulation. Then, we estimated and analyzed the effects and the performance of the roundabout. In addition, we adjusted a method to improve the benefits of the transformation via the optimization of signals located at an approaching road to control the incoming traffic volume. RESULTS : The results of this research are as follows: The signal-optimized roundabout improved delays compared with the signalized intersection during the morning peak hour, non-peak hour, and evening peak hour by 1.78%, 12.45%, and 12.72%, respectively. CONCLUSIONS : According to the simulation results of each scenarios, the signal-optimized roundabout had less delay time than the signalized intersection. If optimized signal control algorithms are installed in roundabouts in the future, this will lead to more efficient traffic management.

Study of Feasibility Analysis for the Protected-Permissive Left-Turn Signal Control in Three-Leg Signalized Intersections Using a Microscopic Traffic Simulation Model (미시교통시뮬레이션을 이용한 3지 교차로 보호-비보호 좌회전 도입 타당성 분석에 관한 연구)

  • Yun, Ilsoo;Park, Sangmin;Heo, Nak Won;Yoon, Jung Eun;Kim, Young Sun;Lee, Sang Soo
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.89-98
    • /
    • 2015
  • PURPOSES : This study evaluated the feasibility of implementing protected-permissive left-turn (PPLT) signals at three-leg signalized intersections. METHODS: A three-leg signalized intersection with permissive left-turn was first selected. A VISSIM simulation model was constructed using data collected from the test site. The VISSIM network was calibrated by adjusting related parameter values in order to minimize the difference between the simulated and surveyed critical gap. The calibrated network was validated by the number of waiting left-turning vehicles per cycle. Finally, the mobility and safety measures were extracted from simulation runs in which permissive, protected left turns as well as PPLTs were realized based on diverse traffic volume scenarios. RESULTS : The mobility-related measures of effectiveness (MOEs) of the case with PPLT outperformed the other two left-turn treatment scenarios. In particular, the average waiting time per cycle for the left-turn vehicles in the case with PPLT was reduced by 30 s. The safety-related MOEs of the case with PPLT were somewhat higher than those in the case with protected left-turns and much higher than those in the case with permissive left-turns. CONCLUSIONS : Based on the mobility- and safety-related MOEs generated from the VISSIM simulation runs, the use of PPLT seems to be feasible at three-leg signalized intersections where the left-turn is permissive and a pedestrian signal exists at the conflicting approach. However, in order to use the PPLT in earnest, it is necessary to revise the road traffic act, traffic signs, and related manuals.

Macroscopic and Microscopic Traffic Simulation Using the Discrete Event system Formalism (이산 사건 형식론을 이용한 거시적 및 미시적 교통류 시뮬레이션)

  • 이종근
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1999.04a
    • /
    • pp.110-114
    • /
    • 1999
  • 본 연구는 Zeigler가 제안한 이산 사건 시스템 형식론(DEVS: Discrete Event System Specification)을 이용한 거시적 및 미시적 교통류 시뮬레이션 방법론의 개발을 주 목적으로 한다. 도로 교통망의 모델링 방법은 미시적(microscopic)방법과 거시적(macroscopic)방법으로 분류된다. 이러한 모델링 방법들은 그 목적에 따라 각기 표현되어 제각기 사용되어 왔으나, 시스템 이론적으로 이들은 독립적 모델이 아니며 오히려 이들은 서로 동질적 추상화 관계에 있어서, 통합 모델링 환경의 구축시 미시적 모델들로부터 추상화에 의한 거시적 모델의 자동생성 등 설계상의 효율뿐 아니라 모델간의 일관성을 통한 모델 유효성을 보장할 수 있는 장점이 제공될 수 있다. 따라서, 본 논문에서는 서로 다른 표현 방법(즉, 이산시간 형식론과 이산사건 형식론)간의 통합 표현을 기반으로 양자간의 추상화 관계를 도출하고, 이를 이용한 모델 추상화를 통해 거시적 및 미시적 교통류 시뮬레이션 방법론을 제안한다. 시스템 이론적 접근을 토대로 접근한 통합 교통류 시뮬레이션 환경은 미국 Berkeley 대학 교통 연구소에서 개발한 SHIFT 등과 같은 최첨단 교통류 시뮬레이션 도구에 비하여 SES/MB를 기반을 시스템 이론적이며 소프트웨어공학적인 접근을 통하여, 1) 기존 제어 방식의 검증 및 신뢰도 분석, 2) 각종 사건, 사고의 시간별 파급효과 분석, 3) 도로건설 계획안에 대한 타당성 검토, 4) 운전자 및 관리자를 위한 예측된 교통정보 등을 제공할 수 있을 것으로 기대된다.

  • PDF

Development of an Interface Module with a Microscopic Simulation Model for COSMOS Evaluation (미시적 시뮬레이터를 이용한 실시간 신호제어시스템(COSMOS) 평가 시뮬레이션 환경 개발)

  • Song, Sung-Ju;Lee, Seung-Hwan;Lee, Sang-Soo
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.2 s.73
    • /
    • pp.95-102
    • /
    • 2004
  • The COSMOS is an adaptive traffic control systems that can adjust signal timing parameters in response to various traffic conditions. To evaluate the performance of the COSMOS systems, the field study is only practical option because any evaluation tools are not available. To overcome this limitation, a newly integrated interfacing simulator between a microscopic simulation program and COSMOS was developed. In this paper, a detector module and a signal timing module as well as general feature of the simulator were described. A validation test was performed to verify the accuracy of the data flow within the simulator. It was shown that the accuracy level of information from the simulator was high enough for real application. Several practical comments on further studies were also included to enhance the functional specifications of the simulator.

Development of a Gap Acceptance Model for the Simulation of Merging Area on Urban Freeways (모의실험 전산모형을 위한 도심고속도로 합류부 간격수락행태모형 개발)

  • 김준현;김진태;장명순;문영준
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.6
    • /
    • pp.115-128
    • /
    • 2002
  • Traffic engineers have developed and implemented various microscopic simulation models to verify the traffic performance and to prevent the expected problems. The existing microscopic simulation models categorize drivers into several types to reflect various drivers' driving patterns but miss the dynamics of drivers' behavior changed based upon the traffic conditions. It was found from the field data collected from two different merging sections on an urban freeway in Seoul, Korea, that the drivers' critical gap distributions are changed based on (1) the traffic density on the adjacent lane to the acceleration lane and (2) the opportunities left to merge in terms of distance to the end of acceleration lane. It was also found from the study that the drivers' critical gap distributions follow the Normal distribution. and its mean and variance change while a vehicle progresses on an acceleration lane. This paper proposes a new gap-acceptance model developed based on a set of drivers' critical gap distributions from each segment on the acceleration lanes. Through the comparison study between the field data and the results from the simulation utilizing the proposed model, it was verified that (1) the distribution of merging points on an acceleration lane to the adjacent main lane at different density levels, (2) the size of the gap accepted for merging and (3) the speed difference between the merging vehicle and the trailing vehicle at the time of merging are statistically identical to the field data at 95% confidence level.

Development of Fuzzy Travel Time Estimator for Interrupted Traffic Flow (단속류 퍼지 통행시간 추정기의 개발)

  • 오기도;김영찬
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.5
    • /
    • pp.57-67
    • /
    • 2000
  • Two fuzzy travel time estimators for interrupted traffic flow were developed based on field survey data and simulation data 7hat is collected from DETSIM, which is microscopic traffic simulation model that car-following theory is applied. One is FETTOS(Fuzzy Estimator of Travel Time using Occupancy and Spot speed) and the other is FETTOS(Fuzzy Estimator of Travel Speed using Volume and Occupancy). Fuzzy logic controller was applied to the estimators to deal with non-linear relationship between traffic variables and travel time. According to results of simulation and field survey. estimation of travel time can be modeled by using percent occupancy better than any other traffic variables. Detector location from storyline and signal timing Plan of intersection are affected to estimate travel time. With a few findings, the estimator was constructed and its performance was tested for observed travel time data and simulated data. FETTOS which needs signal timing plan and detector location estimates travel time with accurate better than FETSVO does. However. FETSVO has excellent transferability because the estimator needs set of input data only; volume and time mean speed.

  • PDF

A Review of Emissions Studies for Transportation Engineering (교통환경분야의 국내외 연구동향 및 시사점 (차량배출량 관련 연구를 중심으로))

  • Gang, Jong-Ho;Lee, Cheong-Won
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.6
    • /
    • pp.7-18
    • /
    • 2007
  • There are few studies on air pollution due to vehicle emissions in spite of the importance of this field. Therefore, this study describes trends and suggests implications through analysis relating to existing emissions research. This study has been divided into three areas. The first part is about estimating vehicle emissions. In this part, the authors analyze limits in ways of calculating emissions in the existing macroscopic view and then suggest the development of a model for calculating emissions considering velocity and acceleration. These variables are a function of traffic and individual driving behavior in the microscopic view. The second part is about management techniques for reducing vehicle emissions. The traffic management techniques for reducing vehicle emissions should conform to regional characteristics. The final part is about traffic operation for reducing vehicle emissions. The authors suggest the development of a micro-simulator and then the development of strategies for traffic operation. It is necessary to design better models estimating emissions and then, using real time data, to make a monitoring system simulating emission rates. This study serves as a literature review to make a foundation for further research about emissions research for transportation engineering.