• Title/Summary/Keyword: microscopic analysis

Search Result 1,087, Processing Time 0.029 seconds

Effect of pH and Concentration on Electrochemical Corrosion Behavior of Aluminum Al-7075 T6 Alloy in NaCl Aqueous Environment

  • Raza, Syed Abbas;Karim, Muhammad Ramzan Abdul;Shehbaz, Tauheed;Taimoor, Aqeel Ahmad;Ali, Rashid;Khan, Muhammad Imran
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.213-226
    • /
    • 2022
  • In the present study, the corrosion behavior of aluminum Al-7075 tempered (T-6 condition) alloy was evaluated by immersion testing and electrochemical testing in 1.75% and 3.5% NaCl environment at acidic, neutral and basic pH. The data obtained by both immersion tests and electrochemical corrosion tests (potentiodynamic polarization and electrochemical impedance spectroscopy tests) present that the corrosion rate of the alloy specimens is minimum for the pH=7 condition of the solution due to the formation of dense and well adherent thin protective oxide layer. Whereas the solutions with acidic and alkaline pH cause shift in the corrosion behavior of aluminum alloy to more active domains aggravated by the constant flux of acidic and alkaline ions (Cl- and OH-) in the media which anodically dissolve the Al matrix in comparison to precipitated intermetallic phases (cathodic in nature) formed due to T6 treatment. Consequently, the pitting behavior of the alloy, as observed by cyclic polarization tests, shifts to more active regions when pH of the solutions changes from neutral to alkaline environment due to localized dissolution of the matrix in alkaline environment that ingress by diffusion through the pores in the oxide film. Microscopic analysis also strengthens the results obtained by immersion corrosion testing and electrochemical corrosion testing as the study examines the corrosion behavior of this alloy under a systematic evaluation in marine environment.

Evaluation of intracellular uptake of cyclic RGD peptides in integrin αvβ3-expressing tumor cells

  • Soyoung Lee;Young-Hwa Kim;In Ho Song;Ji Young Choi;Hyewon Youn;Byung Chul Lee;Sang Eun Kim
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.2
    • /
    • pp.92-101
    • /
    • 2020
  • The cyclic Arg-Gly-Asp (cRGD) peptide is well-known as a binding molecule to the integrin αvβ3 receptor which is highly expressed on activated endothelial cells and new blood vessels in tumors. Although numerous results have been reported by the usage of cRGD peptide-based ligands for cancer diagnosis and therapy, the distinct mechanisms, and functions of cRGD-integrin binding to cancer cells are still being investigated. In this study, we evaluated the internalization efficacy of different types of cRGD peptides (monomer, dimer and tetramer form) in integrin αvβ3 overexpressing cancer cells. Western blot and flow cytometric analysis showed U87MG expresses highly integrin αvβ3, whereas CT-26 does not show integrin αvβ3 expression. Cytotoxicity assay indicated that all cRGD peptides (0-200 µM) had at least 70-80% of viability in U87MG cells. Fluorescence images showed cRGD dimer peptides have the highest cellular internalization compare to cRGD monomer and cRGD tetramer peptides. Additionally, transmission electron microscope results clearly visualized the endocytic internalization of integrin αvβ3 receptors and correlated with confocal microscopic results. These results support the rationale for the use of cRGD dimer peptides for imaging, diagnosis, or therapy of integrin αvβ3-rich glioblastoma.

Study on mechanical properties of Yellow River silt solidified by MICP technology

  • Yuke, Wang;Rui, Jiang;Gan, Wang;Meiju, Jiao
    • Geomechanics and Engineering
    • /
    • v.32 no.3
    • /
    • pp.347-359
    • /
    • 2023
  • With the development of infrastructure, there is a critical shortage of filling materials all over the word. However, a large amount of silt accumulated in the lower reaches of the Yellow River is treated as waste every year, which will cause environmental pollution and waste of resources. Microbial induced calcium carbonate precipitation (MICP) technology, with the advantage of efficient, economical and environmentally friendly protection, is selected to solidify the abandoned Yellow River silt with poor mechanical properties into high-quality filling material in this paper. Based on unconfined compressive strength (UCS) test, determination of calcium carbonate (CaCO3) content and scanning electron microscope (SEM) test, the effects of cementation solution concentration, treatment times and relative density on the solidification effect were studied. The results show that the loose silt particles can be effectively solidified together into filling material with excellent mechanical properties through MICP technology. The concentration of cementation solution have a significant impact on the solidification effect, and the reasonable concentration of cementation solution is 1.5 mol/L. With the increase of treatment times, the pores in the soil are filled with CaCO3, and the UCS of the specimens after 10 times of treatment can reach 2.5 MPa with a relatively high CaCO3 content of 26%. With the improvement of treatment degree, the influence of relative density on the UCS increases gradually. Microscopic analysis revealed that after MICP reinforcement, CaCO3 adhered to the surface of soil particles and cemented with each other to form a dense structure.

A Study on Makerspace: Focusing on Its Urbanism and Placeness (산업공간으로서 메이커스페이스의 도시성(urbanism)과 장소성(placeness))

  • Jeong Seok Ha
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.547-567
    • /
    • 2022
  • In this study, I focus on makerspaces, which have rapidly spread since the late 2000s in the world's major cities. Makerspaces, born amid great social change, reflect the core characteristics of industrial space. I analyze the makerspace based on the theoretical perspectives of urbanism in the macroscopic aspect and placeness in the microscopic aspect. The urbanism of makerspaces is manifested through entry into the inner cities and their connections with urban capabilities. This means that convergence with innovation factors is becoming more important than optimization of factor costs and agglomeration economies in the locational determinants of industrial space. The placeness of makerspaces is being re-formed through an emphasis on taste, the expansion of autonomy, and the strengthening of connections. This reveals how the value creation process within the industrial space is changing, from forming-placelessness through standardization, uniformity, and compartmentalization to forming-placeness through restoration of individual humanity and interaction. The results of the urbanism and placenesss analysis carry implications for the present moment, when it is necessary to diversify the spatial planning of industrial spaces.

Identification of Multiple Cancer Cell Lines from Microscopic Images via Deep Learning (심층 학습을 통한 암세포 광학영상 식별기법)

  • Park, Jinhyung;Choe, Se-woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.374-376
    • /
    • 2021
  • For the diagnosis of cancer-related diseases in clinical practice, pathological examination using biopsy is essential after basic diagnosis using imaging equipment. In order to proceed with such a biopsy, the assistance of an oncologist, clinical pathologist, etc. with specialized knowledge and the minimum required time are essential for confirmation. In recent years, research related to the establishment of a system capable of automatic classification of cancer cells using artificial intelligence is being actively conducted. However, previous studies show limitations in the type and accuracy of cells based on a limited algorithm. In this study, we propose a method to identify a total of 4 cancer cells through a convolutional neural network, a kind of deep learning. The optical images obtained through cell culture were learned through EfficientNet after performing pre-processing such as identification of the location of cells and image segmentation using OpenCV. The model used various hyper parameters based on EfficientNet, and trained InceptionV3 to compare and analyze the performance. As a result, cells were classified with a high accuracy of 96.8%, and this analysis method is expected to be helpful in confirming cancer.

  • PDF

Effects of dentin surface preparations on bonding of self-etching adhesives under simulated pulpal pressure

  • Chantima Siriporananon;Pisol Senawongse;Vanthana Sattabanasuk;Natchalee Srimaneekarn;Hidehiko Sano;Pipop Saikaew
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.1
    • /
    • pp.4.1-4.13
    • /
    • 2022
  • Objectives: This study evaluated the effects of different smear layer preparations on the dentin permeability and microtensile bond strength (µTBS) of 2 self-etching adhesives (Clearfil SE Bond [CSE] and Clearfil Tri-S Bond Universal [CTS]) under dynamic pulpal pressure. Materials and Methods: Human third molars were cut into crown segments. The dentin surfaces were prepared using 4 armamentaria: 600-grit SiC paper, coarse diamond burs, superfine diamond burs, and carbide burs. The pulp chamber of each crown segment was connected to a dynamic intra-pulpal pressure simulation apparatus, and the permeability test was done under a pressure of 15 cmH2O. The relative permeability (%P) was evaluated on the smear layer-covered and bonded dentin surfaces. The teeth were bonded to either of the adhesives under pulpal pressure simulation, and cut into sticks after 24 hours water storage for the µTBS test. The resin-dentin interface and nanoleakage observations were performed using a scanning electron microscope. Statistical comparisons were done using analysis of variance and post hoc tests. Results: Only the method of surface preparation had a significant effect on permeability (p < 0.05). The smear layers created by the carbide and superfine diamond burs yielded the lowest permeability. CSE demonstrated a higher µTBS, with these values in the superfine diamond and carbide bur groups being the highest. Microscopic evaluation of the resin-dentin interface revealed nanoleakage in the coarse diamond bur and SiC paper groups for both adhesives. Conclusions: Superfine diamond and carbide burs can be recommended for dentin preparation with the use of 2-step CSE.

Experimental Analysis of the Impact on the Aggressive Following Vehicle by Passenger Vehicle Tinting (승용차 틴팅이 조급한 성향의 후미차량에 미치는 영향에 대한 실험적 분석)

  • Kang, Jong Ho;Lee, Chungwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3D
    • /
    • pp.363-371
    • /
    • 2009
  • The purpose of this study is to verify the safety issue of the tinted vehicle based on the field study as well as the issue of the capacity reduction from the tinted vehicle. Through this study, an innovative experimental method to verify the issues was developed using RTK GPS receivers, and a data collection was conducted using the developed experimental method. Using the collected data, the effects of the ahead vehicle with the windows tinted on the traffic condition such as headways and acceleration noise were analyzed to test that the ahead vehicle with windows tinted too darkly affects the increasing vehicle maneuver as following the degree of tinting. This study was conducted as a frontier study and more studies, for example, full scale analyses considering various road and vehicle conditions need to be conducted in the future.

Spawning Period of the Large Yellow Croaker Larmichthys crocea (Sciaenidae) in the Jeju Coastal Area, Korea (제주 주변해역에 서식하는 부세(Larimichthys crocea)의 산란시기)

  • Seong Yong Moon;Gun Wook Baeck;Jung Ho Park;Hui Tack Song;Mi Hee Lee;Heeyong Kim
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.3
    • /
    • pp.315-323
    • /
    • 2023
  • The maturity and spawning of the large yellow croaker Larmichthys crocea were investigated using samples randomly collected in the Jeju coastal area, Korea. We analyzed monthly changes in maturity stages, gonadosomatic index (GSI), and egg diameter. Additionally, we verified fecundity by size class and total length (TL) at sexual group maturity at 50%, 75%, and 97.5%, as well as by sex ratio (female vs. male). The overall sex ratio of females to males was 1:0.42. The GSI values showed a peak in October, but the spawning season, revealed by the microscopic analysis of gonadal tissue of L. crocea was from October 2021 to March 2022, with the main spawning period from October to November. The fecundity (F) of female L. crocea ranged from 39,232 eggs at 20 to 29.9 cm to 251,003 eggs at 50 to 59.9 cm, with the relationship between TL and F being 80.244TL-1641.6. In females, TL at 50%, 75%, and 97.5% maturity was 22.4, 24.3, and 29.0 cm, respectively.

Mechanical properties and assessment of a hybrid ultra-high-performance engineered cementitious composite using calcium carbonate whiskers and polyethylene fibers

  • Wu, Li-Shan;Yu, Zhi-Hui;Zhang, Cong;Bangi, Toshiyuki
    • Computers and Concrete
    • /
    • v.30 no.5
    • /
    • pp.339-355
    • /
    • 2022
  • The high cost of ultra-high-performance engineered cementitious composite (UHP-ECC) is currently a crucial issue, especially in terms of the polyethylene (PE) fibers use. In this paper, cheap calcium carbonate whiskers (CW) were evaluated on the feasibility of hybrid with PE fibers. Diverse combinations of PE fibers and CW were employed to investigate the multi-scale enhancement on the UHP-ECC performance. A probabilistic-based UHP-ECC tensile strain reliability analysis approach was utilized, which was in general agreement with the experimental results. Furthermore, a multi-dimensional integrated representation was conducted for the comprehensive assessment of UHP-ECC. Results illustrated that CW improved the compressive strength and energy dissipation capacity of UHP-ECC owing to the microscopic strengthening mechanism. CW and PE fiber further promoted the saturated cracking of composite by multi-scale crack arresting effect. In particular, PE1.75-CW0.5 specimen possessed the best overall performance. The ultimate cracking width of PE1.75-CW0.5 group had 98 ㎛, which was 46.18% lower compared to PE2-CW0 group, the 28d compressive strength were slightly improved, the tensile strain capacity was comparable to that of PE2-CW0 group. The results above demonstrated that combinations of PE fiber and CW could significantly enhance the comprehensive performance of UHP-ECC, which was beneficial for large-scale engineering applications.

Correlation between different methodologies used to evaluate the marginal adaptation of proximal dentin gingival margins elevated using a glass hybrid

  • Hoda S. Ismail;Brian R. Morrow;Ashraf I. Ali;Rabab El. Mehesen;Franklin Garcia-Godoy;Salah H. Mahmoud
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.4
    • /
    • pp.36.1-36.17
    • /
    • 2022
  • Objectives: This study aimed to evaluate the effect of aging on the marginal quality of glass hybrid (GH) material used to elevate dentin gingival margins, and to analyze the consistency of the results obtained by 3 in vitro methods. Materials and Methods: Ten teeth received compound class II cavities with subgingival margins. The dentin gingival margins were elevated with GH, followed by resin composite. The GH/gingival dentin interfaces were examined through digital microscopy, scanning electron microscopy (SEM) using resin replicas, and according to the World Dental Federation (FDI) criteria. After initial evaluations, all teeth were subjected to 10,000 thermal cycles, followed by repeating the same marginal evaluations and energy dispersive spectroscopy (EDS) analysis for the interfacial zone of 2 specimens. Marginal quality was expressed as the percentage of continuous margin at ×200 for microscopic techniques and as the frequency of each score for FDI ranking. Data were analyzed using the paired sample t-test, Wilcoxon signed-rank test, and Pearson and Spearmen correlation coefficients. Results: None of the testing techniques proved the significance of the aging factor. Moderate and strong significant correlations were found between the testing techniques. The EDS results suggested the presence of an ion-exchange layer along the GH/gingival dentin interface of aged specimens. Conclusions: The marginal quality of the GH/dentin gingival interface defied aging by thermocycling. The replica SEM and FDI ranking results had stronger correlations with each other than either showed with the digital microscopy results.