• Title/Summary/Keyword: microplastic types

Search Result 11, Processing Time 0.022 seconds

A Study on the Residual Microplastics in Freshwater and Fishes in the Geum River Watershed (금강수계 담수와 어류체내 잔류미세플라스틱 연구)

  • Kim, Nam-Shin;Yoon, Ju-Duk;Lee, Seung-Eun;Park, Young-Joon;Woo, Seung-Hyun
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.1
    • /
    • pp.28-39
    • /
    • 2019
  • This study was conducted to elucidate microplastics detection of freshwater ecosystems in Geum river. Samples are collected at 6 points in freshwater, 5 points in fishes. Freshwater was sampled 100 L per each points and fish species were Opsariichthys uncirostris amurensis, Hemibarbus labeo, Pseudogobio esocinus, Zacco platypus, Micropterus salmoides and Cyprinus carpio. FTIR analyis was adopted to identify microplastic types. Extracted microplastics were PES (polyester), PE (polyethylene), PP (polypropylene), PET (polyethylene terephthalate), PVC(Polyvinyl chloride) in freshwater, and PES, PE, PP, PET, PVC in fishes. Our results were expected to be used basic research information for further study in microplastics of freshwater ecosystems.

Microplastic pollution in two industrial locations of the Karnaphuli River, Bangladesh: insights on abundance, types, and characteristics

  • Shahida Arfine Shimul;Zannatul Bakeya;Jannatun Naeem Ananna;Antar Sarker;Saifuddin Rana;Sk. Ahmad Al Nahid
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.12
    • /
    • pp.715-725
    • /
    • 2023
  • Microplastic (MP) pollution in aquatic environments is a growing concern worldwide. This study investigated the abundance, types, and attributes of MPs in the surface water at two industrial sites (Avoimitro Ghat and Kalurghat) along the Karnaphuli River in Chattogram, Bangladesh. Sampling was conducted over eight months across three transects encompassing a total area of 500 m at each site. A manta net of 200 ㎛ mesh size was used to sample MPs. The obtained samples were subsequently filtered, enumerated, and characterized using a stereo microscope and imaging software. The mean abundance of MP particles (per km2 ) was found higher in Avoimitro Ghat (94,861 ± 57,126) than in Kalurghat (31,343 ± 23,183). A significant statistical difference (p < 0.05) was observed in the mean abundance of MP particles between the wet and dry seasons. The fragment group of MP exhibited the most abundant category, whereas the pellet category displayed the lowest. MPs with an elongated shape prevailed at both locations throughout all seasons. At Avoimitro Ghat, blue-colored MPs demonstrated the highest mean count, while in Kalurghat, the highest mean count belonged to brown-colored MPs. The size distribution of MPs differed between the two sites, with 1-2 mm MPs being plentiful in both seasons and Avoimitro Ghat, whereas MPs ranging from 500 ㎛ to less than 1 mm were abundant in Kalurghat. Ten (10) polymer types were found from Fourier-transform infrared spectroscopy (FTIR) analysis with high levels of polypropylene atactic in both Avoimitro Ghat (32%) and Kalurghat (17%). The findings provide important insights into MP pollution in the Karnaphuli River, which may aid in developing effective strategies to mitigate the impacts of MP pollution on the aquatic ecosystem and human health.

Study on Structural Strength and Application of Composite Material on Microplastic Collecting Device (휴대형 미세플라스틱 수거 장비 경량화 부품 설계 및 구조강도 평가)

  • Myeong-Kyu, Kim;Hyoung-Seock, Seo;Hui-Seung, Park;Sang-Ho, Kim
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.447-455
    • /
    • 2022
  • Currently, the problem of pollution of the marine environment by microplastics is emerging seriously internationally. In this study, to develop a lightweight portable microplastic collection device, the types and number of microplastics in 21 coastal areas nationwide in Korea were investigated. And CFRP (Carbon Fiber Reinforced Plastic), GFRP (Glass Fiber Reinforced Plastic), ABS (Acrylonitrile Butadiene Styrene copolymer) and aluminum were applied for design and analysis of microplastic collection device to have the durability, corrosion resistance and lightweight. As a result of sample collection and classification from the shore, it was confirmed that microplastics were distributed the most in Hamdeok beach, and the polystyrene was found to be mainly distributed microplastics. Particle information through coastal field survey and CFD (Computational Fluid Dynamics) analysis were used to analyze the flow rate and distribution of particles such as sand and impurities, which were applied to the structural analysis of the cyclone device using the finite element method. As a result of structural analysis considering the particle impact inside the cyclone device, the structural safety was examined as remarkable in the order of CFRP, GFRP, aluminum, and ABS. In the view of weight reduction, CFRP could be reduced in weight by 53%, GFRP by 47%, and ABS by 61% compared to aluminum for the cyclone device.

A comprehensive review of microplastics: Sources, pathways, and implications (미세 플라스틱의 종합적 고찰: 근원, 경로 및 시사점)

  • Yano, K.A.V.;Reyes, N.J.D.G.;Geronimo, F.K.F.;Jeon, M.S.;Kim, Y.;Kim, L.H.
    • Journal of Wetlands Research
    • /
    • v.22 no.2
    • /
    • pp.153-160
    • /
    • 2020
  • Most studies defined microplastic (MP) as plastic particles less than 5 mm. The ubiquity of MP is raising awareness due to its potential risk to humans and the environment. MP can cause harmful effects to humans and living organisms. This paper review aimed to provide a better understanding of the sources, pathways, and impacts of MP in the environment. MP can be classified as primary and secondary in nature. Moreover, microplastic can also be classified as based on its physical and chemical characteristics. Stormwater and wastewater are important pathways of introducing MP in large water bodies. As compared to stormwater, the concentrations of MP in wastewater were relatively lower since wastewater treatment processes can contribute to the removal of MP. In terms of polymer distribution, wastewater contains a wider array of polymer varieties than stormwater runoff. The most common types of polymer found in wastewater and stormwater runoff were polypropylene (PP), polyvinyl chloride (PVC), polystyrene (PS), polyethylene (PE) and polyethylene terephthalate (PET). The continuous discharge and the increasing number of MP in the environment can pose greater hazards and harmful effects on humans and other living organisms. Despite the growing number of publications in relation to MP, further studies are needed to define concrete regulations and management strategies for mitigating the detrimental effects of MP in the environment.

Sorption Characteristics of Tetracycline in Water on Microplastics (수중 테트라사이클린의 미세플라스틱에 대한 흡착 특성)

  • Yu Jin Seo;Ruri Lee;Eun Hea Jho
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.4
    • /
    • pp.276-281
    • /
    • 2022
  • BACKGROUND: Plastics that are used in our daily lives largely end up in the environment. In agricultural environments, plastic wastes and microplastics can be found due to the uses and improper management of plastic products (e.g., vinyl greenhouses and mulching vinyl). Microplastics can also interact with contaminants in the agricultural environment. Therefore, this study was set to investigate the sorption characteristics of tetracycline, one of widely used antibiotics, on microplastics. METHODS AND RESULTS: The sorption tests were carried out with the tetracycline solutions (0-30 mg L-1) and microplastic films prepared from low density polyethylene (LDPE) and polyvinyl chloride (PVC). The residual tetracycline concentrations were analyzed and fitted to the Freundlich and Langmuir isotherm models. The tetracycline sorption patterns on LDPE and PVC films were described better with the Freundlich isotherm model than the Langmuir isotherm model. The isotherm model parameters suggested that the maximum sorption amount of tetracyline was greater for PVC, while the sorption affinity was greater for LDPE. CONCLUSION(S): Different types of microplastics can have different sorption characteristics of tetracycline. Therefore, there is a need for continuous research on the interaction of various types and shapes of microplastics and contaminants in the environment.

Development of a System for Analyzing the Types and Sizes of Microplastics in an Aquatic Environment (수계 내 미세플라스틱의 종과 크기를 분석하기 위한 시스템 개발)

  • Su-jeong Jeon;Joon-seok Lee;Bo-ram Park;Kyung-hoon Beak
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.203-208
    • /
    • 2024
  • Every year, approximately 350 million tons of plastic waste are generated worldwide. This waste, can degrade into microplastics, owing to factors such as temperature changes and UV exposure. These smaller plastic particles are increasingly entering the food chain through marine life, thereby raising concerns about their impact on human health. Consequently, there is an increasing need to measure microplastics. Common methods involve direct collection by using a manta trawl equipped with a 330 ㎛ mesh net or performing spectroscopic and thermal analyses on collected samples. However, these methods require complex pre-processing, which risk sample destruction. In this study, we developed a system to directly sample microplastics in aquatic environments by using laser-induced fluorescence spectroscopy. Through an analysis of the fluorescence spectra as well as, the with gradient and integration at specific points, we successfully distinguished microplastics of 100, 200, 300, and 500 ㎛ in size, and we also differentiated between polyethylene (PE) and polystyrene (PS) types.

The effects of microplastics on marine ecosystem and future research directions (미세플라스틱의 해양 생태계에 대한 영향과 향후 연구 방향)

  • Kim, Kanghee;Hwang, Junghye;Choi, Jin Soo;Heo, Yunwi;Park, June-Woo
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.4
    • /
    • pp.625-639
    • /
    • 2019
  • Microplastics are one of the substances threatening the marine ecosystem. Here, we summarize the status of research on the effect of microplastics on marine life and suggest future research directions. Microplastics are synthetic polymeric compounds smaller than 5 mm and these materials released into the environment are not only physically small but do not decompose over time. Thus, they accumulate extensively on land, from the coast to the sea, and from the surface to the deep sea. Microplastic can be ingested and accumulated in marine life. Furthermore, the elution of chemicals added to plastic represents another risk. Microplastics accumulated in the ocean affect the growth, development, behavior, reproduction, and death of marine life. However, the properties of microplastics vary widely in size, material, shape, and other aspects and toxicity tests conducted on several properties of microplastics cannot represent the hazards of all other microplastics. It is necessary to evaluate the risks according to the types of microplastic, but due to their variety and the lack of uniformity in research results, it is difficult to compare and analyze the results of previous studies. Therefore, it is necessary to derive a standard test method to estimate the biological risk from different types of microplastics. In addition, while most of the previous studies were conducted mostly on spheres for the convenience of the experiments, they do not properly reflect the reality that fibers and fragments are the main forms of microplastics in the marine environment and in fish and shellfish. Furthermore, studies have been conducted on additives and POPs (persistent organic pollutants) in plastics, but little is known about their toxic effects on the body. The effects of microplastics on the marine ecosystems and humans could be identified in more detail if standard testing methods are developed, microplastics in the form of fibers and fragments rather than spheres are tested, and additives and POPs are analyzed. These investigations will allow us to identify the impact of microplastics on marine ecosystems and humans in more detail.

Zooplankton and Neustonic Microplastics in the Surface Layer of Yeosu Coastal Areas (여수 연안 표층에 출현하는 동물플랑크톤과 미세플라스틱)

  • Kang, Hui Seung;Seo, Min Ho;Yang, Yun Seok;Park, Eun-Ok;Yoon, Yang Ho;Kim, Daejin;Jeong, Hyeon Gyeong;Soh, Ho Young
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.1
    • /
    • pp.11-20
    • /
    • 2018
  • In planktonic ecosystems, the microplastics are considered as a potential food source for the zooplankton. To study a relationship between the zooplankton and the neustonic microplastics, a research experiment was carried out during May in the surface layers of the Yeosu coastal areas including Yeoja Bay, Gamak Bay, Yeosuhae Bay, and Botdol Sea. A neustonic zooplankton net (mesh size $300{\mu}m$; mouth area $30cm{\times}18cm$) was towed from the side of the ship in the event that it would not be affected by waves crashing by the ship at a speed of ca. 2.5 knots. All of the microplastic particles were separated from the zooplankton. The zooplankton and microplastics were appearing in a range of 61 to $763indiv.m^{-3}$ and 0.0047 to $0.3471particle\;m^{-2}$, respectively. It was noted that the Acartia omorii, Paracalanus parvus s. l., Labidocera euchaeta, A. hongi, decapod larvae, and cirriped larvae were predominantly seen in the experiment. For verifying relationships between zooplankton and environmental factors in addition to microplastics, a model redundancy analysis (RDA) was performed. The zooplankton were divided into two groups on the basis of feeding types (i.e. particle feeders, and carnivores), and the associated zooplankton larvae were also separately considered. A review of the additional environmental factors such as water temperature, salinity, turbidity, chlorophyll-${\alpha}$ concentration, diatom density, and dinoflagellate density were also contained in the analysis. The results showed that a noted zooplankton abundance had no close relation with the occurring number of microplastic particles, but rather was significantly related with other noted environmental factors such as temperature, salinity, turbidity, and chlorophyll-${\alpha}$ concentration. This fact implies that most zooplankton can feed themselves as a unit, by selecting the most likely available nutritious foods, rather than microplastics under the circumstance of food-richness areas, such what food resources are available as in the location of coastal waters.

Removal of Harmful Impurities Including Microplastics in Sun-Dried Sea Salt by Membrane Technology (분리막을 이용한 천일염내 불순물 및 미세플라스틱 제거에 관한 연구)

  • Lim, Si-Woo;Seo, Chae-Hee;Hong, Seung-Kwan;Kim, Jeong-Hoon
    • Membrane Journal
    • /
    • v.32 no.5
    • /
    • pp.314-324
    • /
    • 2022
  • This study is aimed to design a membrane process that systematically removes contaminants including microplastics in sun-dried salt using a separation membrane. In this study, we selected the separation membrane material, pore size, and module suitable for the sun-dried salt fields, and proceeded with the experiments under the salt fields and laboratory conditions. A pilot plant was constructed and tested in our lab and in the actual saltern with the selected 200 kDa, 4 kDa ultrafiltration membranes, and 3 kDa nanofiltration membranes. Most of the impurities in the sea salt were 0.1 ㎛ in size, and more than 7 types of various microplastics were detected in the impurities. After that, as a result of checking the filtered water through the separation membrane process, no impurities were detected. As a result of comparing the existing sea salt component and the sea salt component prepared with separation membrane filtrate, impurities were effectively removed without change in the sea salt component.

The review on standard method of microplastics in soil and groundwater (토양, 지하수 중 미세플라스틱 분석법에 관한 고찰)

  • JongBeom Kwon;Hyeonhee Choi;Sunhwa Park
    • Analytical Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.174-188
    • /
    • 2024
  • This review summarized research trends regarding sample collection methods, pretreatment method, and types of analysis devices for microplastics (MPs) in soil and groundwater matrices. Soil sampling considers the selection of sampling location, depth, and volume. The typically sampling depth is within 15 cm (topsoil), and about 1 kg of mixed each sample. Among spot sampling and continuous flow sampling, groundwater sampling mainly used a continuous flow sampling, with collection rates 2 to 6 L/min in the range of 300~1,000 L, and followed by immediate on-situ filtration. Pretreatment method, applied to soil and groundwater, consist of organic digestion and density separation. In the organic digestion method, H2O2 is recommended among H2O2, acidic, alkaline, and enzymatic method. NaCl is primarily used as a reagent in density separation. However, depending on the density of MPs, other regents can be selectively used like ZnCl2, ZnBr2, and etc. Representative analysis device includes Fourier Transform Infrared (FTIR) and Raman spectroscopy for non-destructive analysis and Pyrolysis Gas Chromatography Mass Spectrometry (Py-GC/MS) for destructive analysis. µ-FTIR and Raman can count MPs of larger than 10 and 1 ㎛, and analyze MPs materials. However, it is need to sufficiently remove interference, like organic matter, in spectroscopic analysis using essential pretreatment method. Py-GC/MS is being continuously researched because it doesn't require complex pretreatment method and allows quantitative analysis of specific materials.