• Title/Summary/Keyword: micropile

Search Result 64, Processing Time 0.024 seconds

A Case Study of the Piled Raft Foundation (Piled Raft 기초 적용사례 분석)

  • 김홍택;강인규;최효범;박시삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.597-604
    • /
    • 2002
  • The piled raft foundation Is an innovative design concept to reduce both the maximum settlement and differential settlements caused by concentrated building loads and load eccentricities, and also to reduce the bending moments of the raft. The main concern given in the design of piled raft foundations is proper judgments both of relative proportions of loads carried by the raft and piles, and of the effect of the pile support on the maximum and differential settlements In the present study, the piled raft foundation used in the foundation system of Richensia Building at Youido, Seoul is introduced and is carried out analyzing the results of field tests such as plate load tests, large plate load test, pile load test, and piled raft load test.

  • PDF

Analysis of Underpinning Construction Cases for Underground Space Expansion (지하공간 확장을 위한 언더피닝 사례분석)

  • Choi, In-Sub;Rhim, Hong-Chul;Kim, Yang-Jung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.11-12
    • /
    • 2013
  • It is required to response to the demand for new space due to high density of population and buildings in urban area. In particular, in case of big cities such as Seoul where the lack of new construction site due to the depletion of available space, existing buildings must be demolished for new construction. Utilization of urban underground space can be an alternative to solve for urban space problems. There are applications of underpinning methods using micropiles for existing buildings. Sometimes, the difficulties come from the compact space available for new foundation underneath the existing ones. In this paper, a novel underpinning method is introduced which can solve the space restriction problems underneath existing columns.

  • PDF

Buckling analysis of piles in weak single-layered soil with consideration of geometric nonlinearities

  • Emina Hajdo;Emina Hadzalic;Adnan Ibrahimbegovic
    • Coupled systems mechanics
    • /
    • v.13 no.3
    • /
    • pp.187-200
    • /
    • 2024
  • This paper presents a numerical model for buckling analysis of slender piles, such as micropiles. The model incorporates geometric nonlinearities to provide enhanced accuracy and a more comprehensive representation of pile buckling behavior. Specifically, the pile is represented using geometrically nonlinear beams with the von Karman deformation measure. The lateral support provided by the surrounding soil is modeled using the spring approach, with the spring stiffness determined according to the undrained shear strength of the soil. The numerical model is tested across a wide range of pile slenderness ratios and undrained shear strengths of the surrounding soil. The numerical results are validated against analytical solutions. Furthermore, the influence of various pile bottom end boundary conditions on the critical buckling force is investigated. The implications of the obtained results are thoroughly discussed.

Evaluation of the Dynamic Behavior of Inclined Tripod Micropiles Using Dynamic Centrifuge Test (원심모형실험을 이용한 그룹 삼축 마이크로파일의 동적거동 평가)

  • Kim, Yoon-Ah;Kwon, Tae-Hyuk;Kim, Jongkwan;Han, Jin-Tae;Kim, Jae-Hyun;An, Sung-Yul
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.93-102
    • /
    • 2023
  • Despite recent modifications to building structural standards emphasizing the seismic stability of building foundations, the current design focus remains solely on vertical support, resulting in insufficient consideration of horizontal loads during earthquakes. In this study, we evaluated the dynamic behavior of inclined tripod micropiles (ITMP), which provide additional seismic resistance against horizontal and vertical loads during earthquakes. A comparison of the dynamic characteristics, such as acceleration, displacement, bending moment, and axial force, of ITMP with a 15° installation angle and normal vertical micropiles with a 0° installation angle was performed using dynamic centrifuge model tests. Results show that under moderate seismic loads, the proposed ITMP exhibited lower acceleration responses than the vertical micropiles. However, when subjected to a long-period strong seismic excitation, such as sine (2 Hz), ITMP showed greater responses than the vertical micropiles in terms of acceleration and settlement. These results indicate that the use of ITMP reduces the amplif ication of short-period (high-f requency) contents compared with the use of vertical micropiles. Therefore, ITMP can be used to enhance seismic performance of structures.

Research & Development of High Performance & Multi-Functional New Grouting Materials for Ground Improvement & Reinforcement (고성능 다기능 특수 그라우트 신재료 개발 및 기초지반보강재로의 사례 연구)

  • Park, Bong-Geun;Cho, Kook-Hwan;Na, Kyung;Yoon, Tae-Gook;Lee, Yong-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.338-350
    • /
    • 2010
  • As existing materials for ground reinforcement, chemical grout material using cementitous materials and waterglass was used. But many problems in terms of ground reinforcement effects were implicated. In this study, for development and applicability verification of new materials, viscosity, fluidity, permeability, Self-Leveling, keeping of drilled hole, antiwashout underwater, resistance of water (groundwater dilution and minimize material eluting) and the early strength and long-term strength characteristics of developed materials was confirmed, and material standards, and establishing construction standards for the various model tests were conducted. As a result, high viscosity, flowability, permeability and keeping of drilled hole characteristics are excellent, in addition to the early strength properties, dilution does nat occur to groundwater, including groundwater is available for dealing with environmental issues. Application of basic and reinforcement method by Filler function in addition to structure can also or development of a new concept can be expected. In addition, middle and large-diameter drilled shaft, micropile, ground anchors, soil-nailing, steel pipes multi-grouting reinforcement for cement injection process could be used enough to even be considered.

  • PDF

Case History: Micropiling for Existing Foundation Retrofits (마이크로파일을 이용한 기초보강공법의 국내 적용 사례)

  • Lee, Jung-Hoon;Choi, Chang-Ho;Cho, Sam-Deok;Lee, Ki-Hwan;Jo, Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.359-365
    • /
    • 2008
  • As housing supply ratio has become over 100%, the strategic vision of government's policies has been changed from new construction to maintenance and regeneration of old architectural-structures. This fact has brought a light on the reconstruction and remodeling industries and a need for retrofit and rehabilitation techniques of existing foundation. Various methods of foundation for architectural-structures do exist. Among them, micropiling technologies are increasingly applied in foundation rehabilitation and seismic retrofitting projects. Micropiling techniques provide environmental-friendly methods for minimizing disturbance to adjacent structures, ground, and the environment. The installation is possible in restrictive area and general ground conditions. The fact that the installation procedures cause minimal vibration and noise and require very low ceiling height makes the micropiling methods to be commonly used for underpin existing structures. Specialized drilling equipment is often required to install the micropiles for existing basement facilities. This paper presents a case study in which micropiles were constructed to support a superstructure for vertical extension of existing elevator core and provide accessibility to underground parking lot. It is intended to become useful reference for the similar remodeling project.

  • PDF

Probabilistic analysis of anisotropic rock slope with reinforcement measures

  • Zoran Berisavljevic;Dusan Berisavljevic;Milos Marjanovic;Svetlana Melentijevic
    • Geomechanics and Engineering
    • /
    • v.34 no.3
    • /
    • pp.285-301
    • /
    • 2023
  • During the construction of E75 highway through Grdelica gorge in Serbia, a major failure occurred in the zone of reinforced rock slope. Excavation was performed in highly anisotropic Paleozoic schist rock formation. The reinforcement consisted of the two rows of micropile wall with pre-stressed anchors. Forces in anchors were monitored with load cells while benchmarks were installed for superficial displacement measurements. The aim of the study is to investigate possible causes of instability considering different probability distributions of the strength of discontinuities and anchor bond strength by applying different optimization techniques for finding the critical failure surface. Even though the deterministic safety factor value is close to unity, the probability of failure is governed by variability of shear strength of anisotropic planes and optimization method used for locating the critical sliding surface. The Cuckoo search technique produces higher failure probabilities compared to the others. Depending on the assigned statistical distribution of input parameters, various performance functions of the factor of safety are obtained. The probability of failure is insensitive to the variation of bond strength. Different sampling techniques should yield similar results considering that the sufficient number of safety factor evaluations is chosen to achieve converged solution.

Evaluation Method for Uplift Load-carrying Capacity of Inclined Group Micropiles in Dense Sand (조밀한 사질토지반에서 경사로 설치된 그룹 마이크로파일의 인발지지력 평가방법)

  • Kyung, Doohyun;Kim, Garam;Kim, Incheol;Lee, Junhwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.1
    • /
    • pp.67-77
    • /
    • 2017
  • In the present study, uplift load carrying behavior of micropiles with installation angle and pile spacing was investigated based on uplift load tests using single and group micropiles. In addition, evaluation methods of uplift load carrying capacity of group micropiles were proposed based on FHWA (2005) and Madhav (1987) and they were compared with test results to confirm the validity of proposed methods. From the test results, uplift load carrying capacities of single and group micropiles increased with the increase of the installation angle up to $30^{\circ}$, whose values also increased slightly with increasing pile spacing. For the proposed method based on FHWA (2005), the estimated values were similar to measured values up to $15^{\circ}$ of installation angle and 5D of pile spacing. For the proposed method based on Madhav (1987), on the other hand, it was observed that the estimated values were in good agreement with measured values in all installation conditions.

Pullout Characteristics of Pressure Reinjection-Grouted Reinforcements in Clay (점성토 지반에 설치된 압력재주입 그라우팅 보강재의 인발특성)

  • Seo, Jungwon;Kim, Nara;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.9
    • /
    • pp.83-89
    • /
    • 2012
  • Anchor, soil nail and micropile have been widely used for slope reinforcement and foundation. These all methods need grouting work after placing reinforcing member. The pressure injection-grouting techniques helps to increase the bearing capacity of reinforcing member by enhancing larger effective pile diameter and increasing the radial stresses acting on the grout body and causing irregular surface. However, the pressure reinjection-grouting techniques is not commonly used because grouting equipment and practical application example are short and the verification of reinforcing effect is difficult. In this study, the laboratory test was performed to evaluate the reinforcing effect with variation of grouting methods in clay. As a result of the test, the pressure reinjection-grouting techniques showed that the pullout capacity of reinforcing member increased up to 1.22~2.61 times comparing to the gravity fill techniques.

The Case Study of Rock Treatment Method for the Fractured Rock Foundation of Underground Roadway Structure (기반암의 파쇄대 특성을 고려한 지하차도 기초 보강사례)

  • Yoon, Ji-Nam;Yang, Sung-Don;Lee, Geun-Ha;Park, Sa-Won;Jung, Hun-Chul
    • Tunnel and Underground Space
    • /
    • v.18 no.2
    • /
    • pp.125-133
    • /
    • 2008
  • The rock treatment methods for improving bearing capacity and reducing settlement of the underground roadway structure foundation on fractured rock was studied in this paper. Also, effective reinforcement scheme was evaluated by numerical analysis for the application to the practical construction. Various in-situ and laboratory tests were executed systematically at Yeongi-goon, Ohoongchungnam-do, Korea, for the purpose of defining the physical and mechanical properties of rock. Consequently the effective treatment methods insuring the bearing capacity of fractured rock were proposed. In addition, the adequate reinforcing depth of the comparatives measure, such as double rod, triple rod injection methods and micropile, were investigated from the case study. Finally, the most effective construction scheme with the consideration of safety and economical aspects were proposed by using numerical analysis(Plaxis ver. 8.2).