• Title/Summary/Keyword: micropile

Search Result 64, Processing Time 0.024 seconds

Horizontal Behavior Characteristics of Umbrella-Type Micropile Applied in Sandy Soil Subjected to Seismic Motion (사질토 지반에 설치된 우산형 마이크로파일의 지진 시 수평거동 특성)

  • Kim, Soo-Bong;Son, Su Won;Kim, Jin Man
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.7
    • /
    • pp.5-16
    • /
    • 2020
  • Currently, the seismic design standards have been strengthened due to the occurrence of the Gyeongju and Pohang earthquake, and seismic performance evaluation of existing facilities is being conducted. It aims to secure a seismic performance effect during earthquakes by improving the micro-pile method, which can be constructed in limited confined places while minimizing damage to existing facilities. The improvement method is to construct all the piles in the square-tray-type plate on the top of the pile by constructing the slope pile in the form of an umbrella around the vertical pile, the main pillar. In this paper, the numerical analysis was performed to analyze the horizontal displacement behavior of an umbrella-type micropile for various real-measurement seismic waves in sandy soil. As a result of numerical analysis, the softer the ground, the better the effect of horizontal resistance of umbrella-type micropile. The horizontal displacement reduction effect was pronounced when the embedded depth was 15 m or more at the same ground strength, and it was found to be effective in earthquakes if it was settled on the ground with an N value of 30 or more. The embedded depth and horizontal displacement suppression effect of the micropile was proportional. Generally, the weaker the ground, the greater the displacement suppression effect. Umbrella-type micropile had a composite resistance effect in which the vertical pile resists the moment and inclined pile resists the axial force.

3-D Numerical Analysis for the Verification of Bearing Mechanism and Bearing Capacity Enhancement Effect on the Base Expansion Micropile (선단 확장형 마이크로파일의 3차원 수치해석을 통한 지지 메커니즘 및 지지력 증대효과 검증)

  • Lee, Seokhyung;Han, Jin-Tae;Jin, Hyun-Sik;Kim, Seok-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.2
    • /
    • pp.19-31
    • /
    • 2021
  • Micropiles are cast-in-place piles with small diameters. The advantage of micropile is low construction expense and simple procedures, so it is widely applied to existing buildings and structures for the reinforcement of foundation and seismic performances. The base expansion structure has been developed following the original mechanism of horizontal expansion steps under compressive loading. This kind of structure can be installed at the pile end to improve the bearing capacity by tip area enlargement and horizontal force increment to the pile surface area. However, 'Micropile with base expansion structure' cannot be put into practical use, because detailed verification for the developed technique has not been conducted so far. In this research, 3-D numerical analysis was conducted to figure out the bearing mechanism of base expansion micropile and to verify the bearing capacity improvement compared to the general micropiles. 3-D modelling of micropile with base expansion structure was carried out and input parameter was determined. Bearing mechanism induced by base expansion structure was analyzed by lab-scale modelling, and bearing capacity improvement was verified by field-scale analysis.

Model Tests for the Effect of Settlement Restraint of Adjacent Structure During Tunnel Excavation (터널굴착에 따른 인접 구조물 침하 억제효과에 관한 실내모형실험)

  • 유문오;임종철;고호성;박이근
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.141-148
    • /
    • 2000
  • In this study, differential settlements of adjacent structure and behaviour of ground during tunnel excavation and the effect of micropile installed to preserve differential settlement of structure are measured and analyzed by model test. In the test results, the effective range of reinforcement is suggested.

  • PDF

Uplift Behavior of Group Micropile according to Embedded Pile Condition in Sand (사질토지반에서 그룹 마이크로파일의 설치조건에 따른 인발거동특성)

  • Kyung, Doo-Hyun;Kim, Ga-Ram;Park, Dae-Sung;Kim, Dae-Hong;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.2
    • /
    • pp.27-37
    • /
    • 2015
  • The micropile is small diameter pile foundation of which diameter is below 300 mm. This system has been applied to reinforce the foundation structure. In the present study, the effects of embedded conditions of group micropiles were investigated from a series of uplift load tests. For the study, uplift load tests were performed using group micropiles in various pile spacing and installation angle. The increase of uplift resistance and the reduction of uplift displacement were investigated in the tests. As the result, the resistances were principally changed by embedded pile angle, the resistance increase were 33%, 59% and 5% for $15^{\circ}$, $30^{\circ}$ and $45^{\circ}$ of embedded pile angle. The uplift displacement reduction increases with lower pile spacing condition and the reduction ratios of uplift displacements in the same spacing condition were 50%, 53%, -45% for $15^{\circ}$, $30^{\circ}$ and $45^{\circ}$ of embedded pile angle.

Load transfer characteristics and bearing capacity of micropiles (마이크로파일의 하중전이특성 및 지지성능 분석)

  • Goo, Jeong-Min;Choi, Chang-Ho;Cho, Sam-Deok;Lee, Ki-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.899-904
    • /
    • 2009
  • This paper presents the analysis result of load-transfer mechanism and pile movements associated with the development of frictional resistance to understand the engineering characteristics of micropile behavior. An field load tests were performed for two different types of micropiles and they are (i) thread bar reinforcement with D=50mm and (ii) hollow steel pipe reinforcement with $D_{out}$=82.5mm and $D_{in}$=60.5mm and wrapped with woven geotextile for post-grouting. The load test results indicated that micropiling with pressured grouting provided better load-transfer characteristics than micropiling with gravity grouting under both compressive and tensile loading conditions in that unit skin frictional resistance is well distributed along installation depth. The unit weight and unconfined compressive strength of cured grout were obtained for each piling method. The strength and unit weight of micropile with pressured grouting was higher than those with gravity grouting. The fact that load bearing quality with pressured grouting is better than that of gravity grouting could be attributed to the dense mutual adhesion between surrounding ground and pile due to pressurized grouting method and better grout quality.

  • PDF

Skin Friction Mobilized on Pack Micropiles Subjected to Uplift Force (인발력을 받는 팩마이크로파일의 주면마찰력)

  • Hong, Won-Pyo;Cho, Sam-Deok;Choi, Chang-Ho;Lee, Choong-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.6
    • /
    • pp.19-29
    • /
    • 2012
  • Pack micropiles were recently developed to improve pile capacity of general micropiles. Pack micropiles were made by warping thread bar or steel pipe of general micropile by geotexlile pack and grouting inside the pack with pressure. According to the pressure, the boring hole could be enlarged. A series of pile uplift tests were performed on three micropiles. Two out of the three piles were the pack micropiles and the other was the general micropile, in which a thread bar was used in the boring hole. According to the pressure applied to the pack micropiles, the diameter of boring hole was enlarged from 152 mm to 220 mm. Unit skin friction mobilized on side surfaces of micropiles increased with displacement of pile head and reached on a constant value, which represents that the relative displacement between piles (or thread bar) and soils was reached on critical state. And the uplift resistance of pack micropile was higher than that of general micropile. Two reasons can be considered: One is that the frictional surface increases due to enlarging diameter of boring holes and the other is that the unit skin friction could increase due to compressing effect of surrounding soils by soil displacement as much as the enlarging volume of boring hole. The compression effect appeared at deeper layer rather than surface layer. The unit skin friction mobilized on micropiles with small diameter was higher than the ones on large bored piles.

Evaluation of Bearing Capacity Enhancement Effect of Base Expansion Micropile Based on a Field Load Test (현장재하시험을 통한 선단확장형 마이크로파일의 지지력 증대효과 분석)

  • Kim, Seok-Jung;Lee, Seokhyung;Han, Jin-Tae ;Hwang, Gyu-Cheol;Lee, Jeong-Seob ;Yoo, Mintaek
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.4
    • /
    • pp.31-44
    • /
    • 2023
  • A base expansion micropile was developed to improve the bearing capacity of the micropile, which bears a simple device installed at the pile base. Under an axial load, this base expansion structure radially expands at the pile tip and attaches itself around ground, compressing the boring wall in the construction stage. In this study, conventional and base expansion micropiles were constructed in the weathered rock where micropiles are commonly installed. Further, field load tests were conducted to verify the bearing capacity enhancement effect. From the load test results, it was revealed that the shaft resistance of base expansion micropiles was about 12% higher than that of conventional micropiles. The load transfer analysis results also showed that compared to conventional micropiles, the unit skin friction and unit end bearing of base expansion micropiles were 15.4% and 315.1% higher, respectively, in the bearing zone of the micropile.

Critical Buckling Characteristics of Micropiles Under Axial Loads (축하중을 고려한 마이크로파일의 임계좌굴특성)

  • Jeong, Hyeon-Sik;No, In-Soo;Lee, Yeong-Seang
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.9
    • /
    • pp.39-51
    • /
    • 2015
  • various soil conditions as its application to foundation retrofit works has increased. However, most of the domestic researches focused mainly on bearing behavior of Case-I and Case-II type micropiles, whereas structural verification research was insufficient in relation with bulking behavior in particular. In this respect, this study was perfomed to understand the critical buckling characteristics of micropiles under axial load with various steel bars and grout conditions. As a result, it was found that a critical buckling shear strength of a micropile increases for smaller diameter micropile and a critical buckling load decreases with a longer length in the condition under the critical buckling length. Also, a method to evaluate a buckling possibility and yield behavior under axial compressive load conditions is proposed.

Analysis Method Considering the Ground Reinforcement Effect of Micropile by Field Loading Tests (재하시험을 통한 소구경말뚝의 지반보강효과를 고려한 해석법)

  • Hong, Seok-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.1
    • /
    • pp.89-99
    • /
    • 2009
  • Compared to standard piling methods, micropile construction can be used in downtown areas since it generates less vibration and noise. Since it only causes less soil disturbance, it is commonly used as reinforcement to existing structures. In this study, a field wherein the bearing capacity and settlement of soil can not support the weight of the superstructure was selected and micropiles were implemented instead of ordinary piles. The deformation modulus of the micropile reinforced ground was determined and was directly reflected in the design. Loading testing was used to check whether or not the allowable bearing capacity satisfies the condition of the designed bearing capacity. The computed deformation modulus based from the test was used in the numerical analysis of soil to investigate the stability of the foundation and analysis method. And a method for controlling the bearing capacity and settlement was recommended.

Development of New Micropiling Technique and Field Installation (신개념 마이크로파일 개발 및 현장시험시공)

  • Choi, Chang-Ho;Goo, Jeong-Min;Lee, Jung-Hoon;Cho, Sam-Deok;Jeong, Jae-Hyeong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.571-578
    • /
    • 2009
  • Recently, micropiling techniques are increasingly applied in foundation rehabilitation/underpinning and seismic retrofitting projects where working space provides the limited access for conventional piling methods. Micropiling techniques provide environmental-friendly methods for minimizing disturbance to adjacent structures, ground, and the environment. Its installation is possible in restrictive area and general ground conditions. The cardinal features that the installation procedures cause minimal vibration and noise and require very low ceiling height make the micropiling methods to be commonly used for underpin existing structures. In the design point of view, the current practice obligates the bearing capacity of micropile to be obtained from skin friction of only rock-socketing area, in which it implies the frictional resistance of upper soil layer is ignored in the design process. In this paper, a new micropiling method and its verification studies via field installation are presented. The new method provides a specific way to grout bore-hole to increase frictional resistance between surrounding soil and pile-structure and it allows to consider the skin friction of micropiles for upper soil layer during design process.

  • PDF