• Title/Summary/Keyword: micron-sized particle

Search Result 47, Processing Time 0.03 seconds

Computational visualization for condensational growth of micro-particles in the pipe flow through a porous material (다공성 물질을 통과하는 관내 유동에서의 미세 입자 응축성장 전산 가시화)

  • Moon, Jihoo;Kim, Daegyoum
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.2
    • /
    • pp.63-69
    • /
    • 2022
  • In this study, we numerically simulate the condensational growth of micron-sized particles traveling through a pipe filled with humidified air. Using the finite volume method and Lagrangian particle tracking technique, the mixture of particle-laden flow with moist air in a T-juction pipe is simulated. The condensational growth of particles is calculated by considering the mass transfer of vapor in the air onto the particle surface. The results indicate that the growth rate of the particles increases as the relative humidity of air is higher. Furthermore, the placement of a porous media with low permeability in the pipe could enhance the degree of condensational growth.

Effectiveness of droplet protective screens and portable air purifiers against droplet and airborne transmission during conversation (비말 가림막과 휴대형 공기청정기 사용에 의한 대화 중 비말 및 공기전파 저감 효과)

  • Jieun, Heo;Dongho, Shin;Hee-Joo, Cho;Hyun-Seol, Park;Yun-Haeng, Joe
    • Particle and aerosol research
    • /
    • v.18 no.4
    • /
    • pp.87-95
    • /
    • 2022
  • Currently, droplet protective screens (DPSs) are used to prevent the spread of respiratory diseases. As virus particles can maintain their infective in indoor environments, recent studies have investigated the risk of airborne transmission. However, the ability of DPSs to block airborne transmission has not been verified yet. In this study, the preventive ability of DPSs against droplet and airborne transmission was evaluated. Moreover, the effectiveness of a Portable air purifier (PAP) was investigated. According to results, in a simulated room where an infectious person spoke, the DPS blocked more than 90% of the micron-sized droplets (with a diameter larger than 1 ㎛) transmitted to the front of the infectious person. However, sub-micron droplets (with a diameter smaller than 1 ㎛) passed through the DPS and spread in a room. However, the PAP reduced the amount of both micron and sub-micron droplets transmitted to the front of the infectious person. When the PAP airflow direction was set from the DPS surface to the free space near the infectious person, improved prevention against droplet and airborne transmission was recorded. However, airborne transmission was accelerated when the PAP airflow direction was set from the free space to the DPS surface.

Effect of Pulse Plating on Hardness of Brass-Alumina Nanocomposite (펄스전류인가가 황동-알루미나 나노복합도금층의 경도에 미치는 영향)

  • 오영주;안재우;안종관;이만승
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.3
    • /
    • pp.158-164
    • /
    • 2002
  • Nanocomposites consisting of a nanocrystalline brass matrix (grain size ; 20-100nm) with sub-micron sized Al2O3 particles (60-200nm) were prepared by pulsed current electrodeposition. The microhardness of the nanocomposite with a grain size of 90-100nm was approximately 1.7 times higher than that of a comparable electrodeposit with no particles. However, significant variations in microhardness were not observed between the nanocomposites with grain sizes of 20 nm and the comparable electrodeposit.

Filtration Performance Evaluation of Various Respiratory Face Masks Against Sub-Micron Particles (다양한 호흡기 보호용 면체 마스크의 서브 마이크론 입자에 대한 여과 성능 평가)

  • Zainul Alim Ali Murtadlo;Cho Hee-Joo;Park Hyun-Seol
    • Particle and aerosol research
    • /
    • v.19 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • Respiratory face masks are protective facepieces that are designed to filter inhaled air. They are easy-to-use devices that can protect the wearer against various hazardous particles in the air. Respiratory face masks also prevent the spread of viruses and bacteria-containing droplets that are released from the coughing or sneezing of the infected people. During the COVID-19 pandemic, various types of face masks have circulated on the market. Their ability to filter sub-micron particles, which are the sizes of harmful particulate matter and airborne viruses, needs to be investigated. Their breathability, the easiness of breath through the mask, also needs to be considered. In this study, wwe evaluated the performance of filters used for different types of face masks certified by different standards including Korean (KF94, KF80, KF-AD), USA (N95), and Chinese (KN95) standards. We also tested the filters of nanofiber masks and surgical masks for which there are no standards for filtration test. The N95 mask filters showed the highest quality factor for capturing virus-sized particles. The other types of mask filters have acceptable performance except for nanofiber mask filters whose performance is very low.

Analysis of forces on a charged micron-sized particle between two parallel-plate electrodes (두 평판 전극간에 놓인 하전된 마이크로 입자에 작용하는 힘에 대한 해석)

  • Kim, Seung-Taek;Lee, Sang-Ho;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1519_1520
    • /
    • 2009
  • This paper investigates forces on a charged particle used in the e-paper application. The particles were inserted into the pixels and according to the applied voltage, particles moves up or down to the electrodes. So, to design the e-paper, the force analysis is very important for the stable operation of e-paper. For these purposes, we divided forces into 4 different forces and numerically evaluated each force. From the simulation results, we confirmed that the minimum voltage to detach the particle from the bottom electrode can be obtained for the given condition.

  • PDF

Fabrication of various Si particle by Pulsed Laser Ablation (PLA법에 의한 Si 미립자 제작)

  • Kim, M.S.;Yoshimoto, Mamoru;Koinuma, Hideomi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.121-125
    • /
    • 2001
  • We study the feasibility of synthesizing Si particles using PLA method. In the previous studies, it was possible to control the size of Si nanoparticles by the He gas pressure. In this study, we fabricated sub-micron size Si particles with various shapes such as conical, hexagonal, and ring by controlling not only the ambient gas pressure but also the laser energy density. Furthermore, we found that the conical Si particles were uniform-sized and had step shape when observed from FE-SEM and AFM. The conical Si particle has the same crystal structure as the bulk single crystalline Si by the analysis of the Raman scattering. It is shown that the relationship between the laser energy density and the He gas pressure inside the chamber affects the shape of the Si particle.

  • PDF

Fabrication of various Si particle by Pulsed Laser Ablation (PLA법에 의한 Si 미립자 제작)

  • ;Mamoru Yoshimoto;Hideomi Koinuma
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.121-125
    • /
    • 2001
  • We study the feasibility of synthesizing Si particles using PLA method. In the previous studies, it was possible to control the size of Si nanoparticles bythe He gas pressure. In this study, we fabricated sub-micron size Si particles with various shapes such as conical, hexagonal, and ring by controlling not only the ambient as pressure but also the laser energy density. Furthermore, we found that the conical Si particles were uniform-sized and had step shape when observed from FE-SEM and AFM. The conical Si particle has the same crystal structure as the bulk single crystalline Si by the analysis of the Raman scattering. It is shown that the relationship between the laser energy density and the He gas pressure inside the chamber affects the shape of the Si particle.

  • PDF

Preparation and Characterization of Lysozyme Nanoparticles using Solution Enhanced Dispersion by Supercritical Fluid (SEDS) Process (용액분산촉진 초임계 공정을 이용한 라이소자임 나노 입자의 제조 및 그 특성)

  • Kim, Dong-Hyun;Park, Hee-Jun;Kang, Sun-Ho;Jun, Seoung-Wook;Kim, Min-Soo;Lee, Si-Beum;Park, Jeong-Sook;Hwang, Sung-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.2
    • /
    • pp.89-94
    • /
    • 2005
  • The micron or nano-sized lysozyme as a model protein drug was prepared using solution enhanced dispersion by supercritical fluid (SEDS) process at various conditions (e.g., solvent, temperature and pressure) to investigate the feasibility of pulmonary protein drug delivery. The lysozyme particles prepared were characterized by laser diffraction particle size analyzer, scanning electron microscopy (SEM) and powder X-ray diffractometry (PXRD). The biological activity of lysozyme particles after/before SEDS process was also examined. Lysozyme was precipitated as spherical particles. The precipitated particles consisted of 100 - 200 nm particles. Particle size showed the precipitates to be agglomerates with primary particles of size $1\;-\;5 \;{\mu}m$. The biological activity varied between 38 and 98% depending on the experimental conditions. There was no significant difference between untreated lysozyme and lysozyme after SEDS process in PXRD analysis. Therefore, the SEDS process could be a novel method to prepare micron or nano-sized lysozyme particles, with minimal loss of biological activity, for the pulmonary delivery of protein drug.

Optimization of Classifier Operation Conditions Using Taguchi Method and Multiphase Flow Analysis (다구찌 기법과 다상유동해석을 이용한 분급기 운전조건 최적화)

  • Jin, Byeong-Ju;Park, Min-Ho;Yoon, Tae-Jong;Kim, Young-Joo;Kang, Bong-Young;Shim, Ji-Yeon;Kim, Ill-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.3
    • /
    • pp.278-284
    • /
    • 2017
  • Generally, classifiers have been used as machines to crush raw materials and classify suitable particle sizes in all industrial fields, such as food, chemical, and mineral. However, the technique for classifying micron-sized particles between 5 and $20{\mu}m$ is inferior. In particular, numerous experiments and considerable experiences are required to predict the particle size, because the classifier particle size is determined according to the internal flow. However, it is quite difficult to set the driving conditions so that the desired particle size can be classified only by experience and experimentation. Therefore, this study proposes a method of predicting the average particle size by employing multiphase flow analysis and the Taguchi method; this method is subsequently verified.

Flow Characteristics of Neutrally Buoyant Particles in 2-Dimensional Poiseuille Flow through Circular Capillaries

  • Kim, Young-Won;Jin, Song-Wan;Yoo, Jung-Yul
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.7-10
    • /
    • 2006
  • An experimental study has been conducted to quantitatively characterize the motion of neutrally buoyant particles in 2-dimensional Poiseuille flow through the micron-sized circular capillaries in the range of Re (Reynolds number) $\approx0.1\sim100$. $A{\mu}-PTV$ (Particle Tracking Velocimetry) system is adopted, which consists of a double-headed Nd:YAG laser, an epi-fluorescence microscope and a cooled CCD camera. Since high shear rate can be induced due to the scale effect even at low Re, it is shown that in micro scale neutrally buoyant particles in Poiseuille flow drift away from the wall and away from the center of the capillary. Consequently, particles accumulate at the equilibrium position of $0.52\sim0.64R$ with R being the radius of the capillary, which is analogous to that of tube flow in macro scale. There is a plateau in equilibrium position at small Re, while equilibrium position starts increasing at $Re\approx30$. The outermost edge of particle cluster is closer to the center of the capillary than that in previous studies due to low Re effect. The present study quantitatively presents characteristics of particle motion in circular capillaries. Furthermore, it is expected to give optimum factors for designing microfluidic systems that are to be used fur plasma separation from the blood.

  • PDF