Browse > Article
http://dx.doi.org/10.11629/jpaar.2022.18.4.087

Effectiveness of droplet protective screens and portable air purifiers against droplet and airborne transmission during conversation  

Jieun, Heo (Climate Change Research Division, Korea Institute of Energy Research)
Dongho, Shin (Climate Change Research Division, Korea Institute of Energy Research)
Hee-Joo, Cho (Climate Change Research Division, Korea Institute of Energy Research)
Hyun-Seol, Park (Climate Change Research Division, Korea Institute of Energy Research)
Yun-Haeng, Joe (Climate Change Research Division, Korea Institute of Energy Research)
Publication Information
Particle and aerosol research / v.18, no.4, 2022 , pp. 87-95 More about this Journal
Abstract
Currently, droplet protective screens (DPSs) are used to prevent the spread of respiratory diseases. As virus particles can maintain their infective in indoor environments, recent studies have investigated the risk of airborne transmission. However, the ability of DPSs to block airborne transmission has not been verified yet. In this study, the preventive ability of DPSs against droplet and airborne transmission was evaluated. Moreover, the effectiveness of a Portable air purifier (PAP) was investigated. According to results, in a simulated room where an infectious person spoke, the DPS blocked more than 90% of the micron-sized droplets (with a diameter larger than 1 ㎛) transmitted to the front of the infectious person. However, sub-micron droplets (with a diameter smaller than 1 ㎛) passed through the DPS and spread in a room. However, the PAP reduced the amount of both micron and sub-micron droplets transmitted to the front of the infectious person. When the PAP airflow direction was set from the DPS surface to the free space near the infectious person, improved prevention against droplet and airborne transmission was recorded. However, airborne transmission was accelerated when the PAP airflow direction was set from the free space to the DPS surface.
Keywords
Airborne transmission; Conversation; Droplet Protective Screen; Portable Air Purifier;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Asadi, S., Bouvier, N., Wexler, A.S., Ristenpart, W.D. (2020). The Coronavirus Pandemic and Aerosols: Does COVID-19 Transmit via Expiratory Particles? Aerosol Sci. Technol. 54(6), 1-4.   DOI
2 Asadi, S., Wexler, A.S., Cappa, C.D., Barreda, S., Bouvier, N.M., Ristenpart, W.D. (2019). Aerosol emission and superemission during human speech increase with voice loudness. Scientific reports. 9(1), 1-10.   DOI
3 Association of Home Appliance Manufacturers. (2006). Method for Measuring Performance of Portable Household Electric Room Air Cleaners. ANSI/AHAM AC-1.
4 Bourouiba, L. (2020). Turbulent Gas Clouds and Respiratory Pathogen Emissions: Potential Implications for Reducing Transmission of COVID-19. JAMA. 323(18), 1837-1838.
5 Chao, C.Y.H., Wan, M.P., Morawska, L., Johnson, G.R., Ristovski, Z.D., Hargreaves, M., Mengersen, K., Corbett, S., Li, Y., Xie, X., Katoshevski, D. (2009). Characterization of Expiration Air Jets and Droplet Size Distributions Immediately at the Mouth Opening. J. Aerosol Sci. 40(2), 122-133.   DOI
6 Domingo, J.L., Marques, M., Rovira, J. (2020). Influence of Airborne Transmission of SARS-CoV-2 on COVID-19 Pandemic. A Review. Environ. Res. 188, 109861.
7 Eissenberg, T., Kanj, S.S., Shihadeh, A.L. (2020). Treat COVID-19 as Though It Is Airborne: It May Be. A.A.N.A. J. 88(3), 29 30.
8 Fabian, P., McDevitt, J.J., DeHaan, W.H., Fung, R.O., Cowling, B.J., Chan, K.H., Leung, G.M., Milton, D.K. (2008). Influenza virus in human exhaled breath: an observational study. PloS one. 3(7), e2691.
9 Foster, A., Kinzel, M. (2021). SARS-CoV-2 transmission in classroom settings: Effects of mitigation, age, and Delta variant. Physics of Fluids, 33(11), 113311.
10 Gregson, F.K.A., Watson, N.A., Orton, C.M., Haddrell, A.E., McCarthy, L.P., Finnie, T.J.R., Donaldson, N.G.G.C., Shah, P.L., Calder, J.D., Bzdek, B.R., Costello, D., Reid, J.P. (2021). Comparing Aerosol Concentrations and Particle Size Distribution Generated by Singing, Speaking and Breathing. Aerosol Science and Technology. 55 (6), 681-691.   DOI
11 Guzman, M.I. (2020). Bioaerosol size effect in COVID-19 transmission.
12 Hinds, W.C. (1998). Aerosol technology, 2nd ed. John Wiley & Sons, inc., New York. Aerosol Sci. Technol. 47, 937-944.
13 Holmgren, H., Ljungstrom, E., Almstrand, A.C., Bake, B., Olin, A.C. (2010) Size distribution of exhaled particles in the range from 0.01 to 2.0 ㎛.  Journal of Aerosol Science. 41(5), 439-446.   DOI
14 Kwon, S.B., Park, J., Jang, J., Cho, Y., Park, D.S., Kim, C., Bae, G.N., Jang, A. (2012). Study on the Initial Velocity Distribution of Exhaled Air From Coughing and Speaking. Chemosphere. 87(11), 1260-1264.   DOI
15 Hu, L., Xiao, Y.H., Fang, M., Gao, Y., Huang, L., Jia, A.Q., Chen, J. H. (2015). Effects of Type I Collagen Degradation on the Durability of Three Adhesive Systems in the Early Phase of Dentin Bonding. PLOS ONE. 10(2), e0116790.
16 Johnson, G.R., Morawska, L., Ristovski, Z.D., Hargreaves, M., Mengersen, K., Chao, C.Y.H., Wan, M.P., Li, Y., Xie, X., Katoshevski, D., Corbett, S. (2011). Modality of human expired aerosol size distributions. Journal of Aerosol Science. 42, 839-851.
17 Kumar, P., Morawska, L. (2019). Could Fighting Airborne Transmission Be the Next Line of Defence Against COVID-19 Spread? City Environ. Interact. 4, 100033.
18 Lessler, J., Grabowski, M.K., Grantz, K.H., Badillo-Goicoechea, E., Metcalf, C.J.E., Lupton-Smith, C., Azman, A.S., Stuart, E.A. (2021). Household COVID-19 risk and in-person schooling. Science. 372(6546), 1092-1097.   DOI
19 Li, Y., Qian, H., Hang, J., Chen, X., Hong, L., Liang, P., Kang, M. (2020). Evidence for Probable Aerosol Transmission of SARS-CoV-2 in a Poorly Ventilated Restaurant. medRxiv.
20 Liu, Y., Ning, Z., Chen, Y., Guo, M., Liu, Y., Gali, N.K., Sun, L., Duan, Y., Cai, J., Westerdahl, D., Liu, X., Xu, K., Ho, K.F., Kan, H., Fu, Q., Lan, K. (2020). Aerodynamic Analysis of SARS-CoV-2 in Two Wuhan Hospitals. Nature. 582(7813), 557-560.   DOI
21 Loudon, R.G., Roberts, R.M. (1967). Droplet expulsion from the respiratory tract. American Review of Respiratory Disease. 95, 435-442.
22 Mittal, R., Ni, R., Seo, J.H. (2020). The Flow Physics of COVID-19. J. Fluid Mech. 894.
23 Setti, L., Passarini, F., De Gennaro, G., Barbieri, P., Perrone, M.G., Borelli, M., Palmisani, J., Di Gilio, A., Torboli, V., Fontana, F., Clemente, L., Pallavicini, A., Ruscio, M., Piscitelli, P., Miani, A. (2020). SARS-Cov-2RNA Found on Particulate Matter of Bergamo in Northern Italy: First Evidence. Environ. Res. 188, 109754.
24 Morawska, L., Cao, J. (2020). Airborne Transmission of SARS-CoV-2: The World Should Face the Reality. Environ. Int. 139, 105730.
25 Morawska, L., Milton, D.K. (2020). It is time to address airborne transmission of coronavirus disease 2019 (COVID-19). Clin. Infect. Dis. 71(9), 2311-2313.
26 Papineni, R.S., Rosenthal, F.S. (1997). The size distribution of droplets in the exhaled breath of healthy human subjects. Journal of Aerosol Medicine. 10(2), 105-116.   DOI
27 Wang, J., Du, G. (2020). COVID-19 may transmit through aerosol. Irish Journal of Medical Science (1971). 189, 1143-1144.   DOI
28 WHO COVID-19 Dashboard. Geneva: World Health Organization, 2020. Available online: https://covid19.who.int/ (searching date: 12th July, 2022)
29 Yang, X., Ou, C., Yang, H., Liu, L., Song, T., Kang, M., Lin, H. (2020). Transmission of pathogen-laden expiratory droplets in a coach bus. Journal of Hazardous Materials. 397, 122609.