• Title/Summary/Keyword: micron fiber

Search Result 28, Processing Time 0.02 seconds

Preparation of S-keratose/Nylon 6 Nonwoven Webs by Electrospinning (전기방사를 이용한 S-keratose/Nylon 6 부직포의 제조)

  • Kim Jin-Won;Song Kyung Geun
    • Textile Coloration and Finishing
    • /
    • v.17 no.1
    • /
    • pp.38-44
    • /
    • 2005
  • Oxidation method was used to extract S-keratose from wool. Wool was treated with performic acid and soluble fraction(S-keratose) was collected by evaporating the solvent. S-keratose and Nylon 6 were dissolved in formic acid at the ratio of 100/0, 80/20, 50/50, 20/80, and 0/100, and S-keratose/Nylon 6 web of sub-micron size was made by electro-spinning technique. SEM, EA, FT-IR, XRD, and TGA were used to characterize the properties of S-keratose/Nylon 6 solutions and electrospun fibers. As the Nylon 6 content increased, viscosity, conductivity of the electrospinning solution and the diameter of spun fiber increased. Electrospun nonwoven webs have the same S-keratose/Nylon 6 ratios of the spinning solutions. The crystalline structures of S-keratose and Nylon 6 existed separately in the electrospun webs. Thermal stability of the webs increased due to Nylon 6 content.

Image Detecting System for Pinhole with Photoelectric Sensors (광전(光電)센서를 활용한 핀홀의 영상검출시스템)

  • Kang, Min-Goo;Zo, Moon-Shin;Jeon, Jong-Suh
    • Journal of Internet Computing and Services
    • /
    • v.13 no.3
    • /
    • pp.17-22
    • /
    • 2012
  • In this paper, a photoelectric image detection system is proposed using an APD(Avalanche Photodiode) sensor, a LED illuminator, and fiberoptic waveguides. This proposed pinhole detection system can detect the pinholes of 100 micron with the speed rate of 1,000mpm(meter per minute). And detecting performance of image system is improved by the SQL based DB analysis of classifying pinhole's detected location and size using image detection algorithms.

Development Trend of Nanofiber Filter (나노섬유 필터의 개발 동향)

  • Kang Inn-Kyu;Kim Young-Jin;Byun Hong-Sik
    • Membrane Journal
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Nanofiber is a broad phrase generally referring to a fiber with diameter less than 1 micron. Various polymers have been successfully electrospun into nanofibers in recent years. These nanofibers, due to their high surface area and porosity, have a great potential for use as filter medium, adsorption layers in protective clothing, etc. Nanofiber filters will enable new levels of filtration performance in the field of air filtration. In particular, nanofibers provide marked increases in filtration efficiency at relatively small pressure drop in permeability. Therefore, nanofiber filters could be substituted for conventional filter market due to the easy application of process and the possibility of coating to micron-sized non-woven sheets. This review is discussed on the trend of researche and development related to nanofiber filter including future marketability.

Effects of Melt-viscosity of Polyethylene Mixtures on the Electrospun-fiber Diameter Using a Oil-circulating Melt-electrospinning Device (열매유형 용융전기방사장치를 이용한 폴리에틸렌 혼합물의 용융점도와 섬유직경의 상관관계 연구)

  • Yang, Hee-Sung;Kim, Hyo-Sun;Na, Jong-Sung;Seo, Young-Soo
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.518-524
    • /
    • 2014
  • Electrospinning has gained interests as a polymer processing technique for nanofiber fabrications. It is well known that both polymer solutions and polymer melts can be electrospun. Among them, melt electrospinning is environmentally friendly technique due to the absence of solvent. However, the diameter of melt-electrospun fibers is typically thicker than solution-electrospun fibers. By using a home-made melt-electrospinning device, micron-sized fibers with smooth and even surfaces were electrospun successfully. We demonstrate that low-density polyethylene fibers can be reduced in diameter with a viscosity-reducing additive such as low molecular weight polyethylene monoalcohol and polyethylene wax. The diameter was further reduced by blending it with oxidized polyethylene wax due to polarity increment. Additionally, parameters affecting the diameter were analyzed such as an applied voltage and a spinning distance.

CNT and CNF reinforced carbon fiber hybrid composites by electrophoresis deposition (전기영동법에 의한 탄소나노튜브 및 탄소나노섬유 강화 탄소섬유 하이브리드 복합재료)

  • Choi, O-Young;Lee, Won-Oh;Lee, Sang-Bok;Yi, Jin-Woo;Kim, Jin-Bong;Choe, Hyeon-Seong;Byun, Joon-Hyung
    • Composites Research
    • /
    • v.23 no.3
    • /
    • pp.7-12
    • /
    • 2010
  • In order to increase the electrical conductivity and the mechanical properties of carbon fabric composites, multi-walled carbon nanotubes (MWCNTs) and carbon nanofibers (CNFs) were deposited on carbon fabrics by anodic and cathodic electrophoretic deposition (EPD) processes. In the cathodic EPD, carbon nano-particles and nano-sized Cu particles were simultaneously deposited on the carbon fabric, which gave a synergetic effect on the enhancement of properties as well as the degree of deposition. The hybridization of carbon nano-particles and micron-sized carbon fiber significantly improved the through-the-thickness electrical conductivity. In addition, both MWCNTs and CNFs were deposited onto the carbon fabric for multi-scale hybrid composites. Multi-scale deposition improved the through-the-thickness electrical conductivity, compared to the deposition of either MWCNTs or CNFs.

An Experimental Study on Enhancement of the Filter Efficiency by the Image Effect of Charged Particle (대전된 입자의 영상효과에 의한 필터효율 향상에 관한 실험적 연구)

  • Lee, Chang-Sun;Jeong, Hae-Young;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.760-768
    • /
    • 2000
  • Filter efficiency of electrically charged particle in uncharged fibrous filter was measured. In previous studies, the effect of charged particle on filter efficiency was investigated but there was difficulty in measuring of image effect that is appeared at the charged small particle. We could easily measure the image effect with charging small particles by photoelectric charging. The spark discharge aerosol generator and a differential mobility analyzer (DMA) were used to generate sub-micron monodisperse particles (${\leq}200$ nm). The generated particles were charged in photoelectric charging process using ultraviolet lamp and electric field. The filter efficiency of the charged particles, classified by another DMA, was measured in filter tester using a condensation nucleus counter (CNC) as function of particle diameter, particle charge and airflow velocity. It is shown that the filter efficiency increases with increasing charge number of the particle and is affected by particle size and flow velocity. Single fiber filter efficiency mainly depends on image force parameter and peclet number. The peclet number was not considered at previous other papers. We propose a modi fied experimental correlation as function of image force parameter and peclet number.

Near-infrared Laser Energy Transmission through Teeth with Crack Lines: An In-vitro Study

  • Sapra, Ashita;Darbar, Arun;George, Roy
    • Medical Lasers
    • /
    • v.10 no.4
    • /
    • pp.214-219
    • /
    • 2021
  • Background and Objectives To evaluate the difference in near-infrared (810 nm) laser energy transmission through teeth with and without cracks. Materials and Methods Extracted teeth were sectioned and examined visually for the presence of cracks with the aid of photographs and a trans-illuminator. Fourteen sections, each with cracks (Group A) and no cracks (Group B) were identified and placed 15 mm from the tip of a 300 micron fiber, prior to activation with an 810 nm diode laser (0.1W, 50 ms interval,100 ms duration). A power meter positioned behind the tooth recorded the average energy that was transmitted through the samples. Unpaired t-test analysis was used to determine if the tooth sections with cracks allowed higher power passage compared to sound teeth. Results The mean power recording for the cracked teeth (Group A) was significantly greater (p = 0.0005) than that for the non-cracked teeth (Group B). Conclusion Within the limitations of this study, it is evident that significantly higher laser energy passes through teeth with cracks in comparison to teeth without cracks. A recent clinical study has also shown that lasers could be used to assess symptomatic cracked teeth. Hence, further research is required to determine the relative increase in energy required to identify symptomatic cracked teeth.

Preparation of Poly(vinyl alcohol)/polypropylene Nano-filter by High Speed Centrifugal Solution Spinning (초고속 용액 원심방사를 이용한 폴리비닐알코올/폴리프로필렌 나노필터 제조)

  • Yang, Seong Baek;Lee, Jungeon;Park, Jae Min;Jung, Jae Hoon;Kim, Tae Young;Kim, Ki Young;Lee, Sang Jun;Yeum, Jeong Hyun
    • Textile Coloration and Finishing
    • /
    • v.34 no.1
    • /
    • pp.20-26
    • /
    • 2022
  • Centrifugal spinning is an emerging technique for fabricating micro-to-nano-fibers in recent years. To obtain fibers with the desired size and morphology, it is necessary to configure and optimize the parameters used in centrifugal spinning. In this study, it was controlled by changing the solution's concentration (7.5, 10, and 12.5 wt.%) and disk's rotational velocity (6,000, 8,000, and 10,000 rpm) to prepare centrifugal spun nano-filter. The morphological property, air permeability, and dust collection efficiency of the PVA/PP bi-layer nanoweb prepared by centrifugal spun PVA on the PP micron nonwoven substrate are studied using a field emission scanning electron microscope, an air permeability tester, and a filter tester equipment, and the analysis results indicate that it is suitable as a nano-filter when the concentration of PVA solution is 10 wt.% and the rotational velocity of the disk is 8,000 rpm. The resultant reduced diameter and uniform fibers also proved that an excellent dust collection efficiency filter could be made.