• Title/Summary/Keyword: micromachining technology

Search Result 232, Processing Time 0.019 seconds

Experimental evaluation of machining limit in machining V-shaped microgrooves on electroless nickel plated die materials (무전해 니켈도금 소재의 초정밀 가공에서 V-형상 미세 패턴 가공한계에 대한 실험적 평가)

  • Kim, Hyun Chul
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.263-267
    • /
    • 2013
  • The continuing demand for increasingly slimmer and brighter liquid crystal display (LCD) panels has led to an increased focus on the role of light guide panels (LGPs) or optical films that are used to obtain diffuse, uniform light from the backlight unit (BLU). The most basic process in the production of such BLU components is the micromachining of V-shaped grooves. Thus, given the current trend, micromachining of V-shaped grooves is expected to play increasingly important roles in today's manufacturing technology. LCD BLUs comprise various optical elements such as a LGP, diffuser sheet, prism sheet, and protector sheet with V-shaped grooves. High-aspect-ratio patterns are required to reduce the number of sheets and enhance light efficiency, but there is a limit to the aspect ratio achievable for a given material and cutting tool. Therefore, this study comprised a series of experimental evaluations conducted to determine the machining limit in microcutting V-shaped grooves on electroless nickel plated die materials when using single-crystal diamond tools with point angles of $20^{\circ}-80^{\circ}$. Cutting performance was evaluated at various cutting speeds and depths of cut using different machining methods and machine tools. The experimental results are that V-shaped patterns with angles of $80^{\circ}$ or up can be realized regardless of the machining conditions and equipment. Moreover, the feed rate has little effect on machinability, and it is thought that the fly-cut method is more efficient for shallow patterns.

Fabrication of Nickel-based Piezoelectric Energy Harvester from Ambient Vibration with Micromachining Technology (마이크로 머시닝 기술을 이용한 니켈기반의 압전 진동형 에너지 하베스터 제작)

  • Cha, Doo-Yeol;Lee, Jai-Hyuk;Chang, Sung-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.1
    • /
    • pp.62-67
    • /
    • 2012
  • Owing to the rapid growth of mobile and electronic equipment miniaturization technology, the supply of micro mobile computing machine has been fast raised. Accordingly they have performed many researches on energy harvesting technology to provide promising power supply equipment to substitute existing batteries. In this paper, in order to have low resonance frequency for piezoelectric energy harvester, we have tried to make it larger than before by adopting nickel that has much higher density than silicon. We have applied it for our energy harvesting actuator instead of the existing silicon based actuator. Through such new concept and approach, we have designed energy harvesting device and made it personally by making with micromachining process. The energy harvester structure has a cantilever type and has a dimension of $10{\times}2.5{\times}0.1\;mm^3$ for length, width and thickness respectively. Its electrode type is formed by using Au/Ti of interdigitate d33 mode. The pattern size and gap size is 50 ${\mu}m$. Based on the measurement of the nickel-based piezoelectric energy harvester, it is found to have 778 Hz for a resonant frequency with no proof mass. In that resonance frequency we could get a maximum output power of 76 ${\mu}W$ at 4.8 $M{\Omega}$ being applied with 1 g acceleration.

Laser micromachining of high-aspect-ratio metallic channels for the application to microthermal devices (마이크로 열소자 제작을 위한 고세장비 금속채널의 레이저 가공)

  • Oh, Kwang-Hwan;Lee, Min-Kyu;Jeong, Sung-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.437-446
    • /
    • 2006
  • A fabrication method fur high-aspect-ratio microchannels in stainless steel using laser-assisted thermochemical wet etching is reported in this paper. The fabrication of deep microchannels with an aspect ratio over ten is realized by applying a multiple etching process with an optimization of process conditions. The cross-sectional profile of the microchannels can be adjusted between rectangular and triangular shapes by properly controlling laser power and etchant concentration. Excellent dimensional uniformity is achieved among the channels with little heat-affected area. Microchannels with a width ranging from 15 to $50{\mu}m$ can be fabricated with an aspect ratio of ten and a pitch of 150 m or smaller. The effects of process variables such as laser power, scan speed, and etchant concentration on the fabrication results, including etch width, depth, and cross-sectional profile are closely examined.

엑사이머 레이져를 이용한 실리콘웨이퍼의 미세가공

  • 윤경구;이성국;황경현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.1058-1062
    • /
    • 1997
  • Development of laser induced chemical etching technologt with KrF laser are carried out in this study for micromachining of silicon wafer. The paper is devoted to experimental identification of excimer laser induced mechanism of silicon under chlorine pressures(0.02~500torr). Experimental results on pulsed KrF excimer laser etching of silicon in chorine atmosphere are presented. Etching rate dependency on laser fluence and chlorine pressure are discussed on the basis of experimental analysis, it is concluded that accurate digital micro machining process of silicon wafer can achieved by KrF laser induced chemical etching technology.

Review of Recent Progress in Micromilling Process Research (미세밀링공정의 최근 연구동향)

  • Heo, Se-Gon;Lee, Won-Kyun;Min, Byung-Kwon;Je, Tae-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.20-26
    • /
    • 2012
  • Recently, micromilling process has been progressed to meet the variety of the industry demands in micromolds and precision components. As a result, more and more commercialized micro tools and machines become available during last few years. This paper reviews the recent progress of micromilling technology in last five years. The results in process, machine tools, and micro tool fabrications are discussed.

Laser Beam Application and Technology in Micro Machining (레이저 빔 응용 기술)

  • 윤경구;이성국;김재구;신보성;최두선;황경현;박진용
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.27-35
    • /
    • 2000
  • 재료가공분야에의 레이저의 적용은 1960년대 후반부터 시작되었으며, 고출력 CO$_2$ 와 Nd:YAG 레이저가 많은 산업분야에서 보편화될 정도로 발전하여 왔다. 재료가공에서의 레이저의 적용분야는 금속의 절단, 용접 및 드릴링, 세라익의 스크라이빙, 플라스틱과 복합재의 절단 및 여러 가지 재료의 마킹 등을 포함한다. 이와 같은 모든 응용에서 공통적인 것이 레이저 조사에 의해 재료를 용융, 증발시키는 열적 메카니즘이다.(중략)

  • PDF

Thermal Flow Sensor Using Silicon Microbridges (실리콘 마이크로브리지를 이용한 유량센서)

  • Yang, Joon-Young;Min, Nam-Ki;Min, Suk-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1391-1393
    • /
    • 1994
  • A silicon microbridge flow sensor has been developed. The heat transfer within silicon microbridge is modeled to predict the characteristics of the sensor. The flow sensor shows high sensitivity at small flow rate. This device is simple to fabricate, using standard IC and micromachining technology.

  • PDF

Design and Fabrication of Micro SLM for Phase and Amplitude Modulation (위상 및 방향 변조를 위한 초소형 광 변조기의 설계와 제작)

  • Chung, Seok-Whan;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3298-3300
    • /
    • 1999
  • In this paper, a $10{\times}10$ micro SLM array for phase and amplitude modulation of incident light is designed and fabricated using surface micromachining technology. Hidden spring structure is used in order to maximize the fill-factor and minimize diffraction effect at the support posts. Static and dynamic characteristics of designed micro SLM are simulated with ABAQUS and measured with optical measurement system using He-Ne laser and PSD(position sensitive devise).

  • PDF