• Title/Summary/Keyword: microlens

Search Result 161, Processing Time 0.038 seconds

Fabrication of Disordered Subwavelength Structures on Curved Surfaces by Using a Thermal Dewetting Process

  • Lee, Jong Heon;Song, Young Min
    • Applied Science and Convergence Technology
    • /
    • v.24 no.5
    • /
    • pp.172-177
    • /
    • 2015
  • We present disordered moth eye structures on curved surfaces fabricated by dry etching of thermally dewetted metal nanoparticles. This lithography-free fabrication allows the formation of subwavelength scale nanostructures on the strongly inclined surfaces such as ball lens as well as on the microlens arrays with low curvature. In particular, we found that the size and average distance of nanostructures are closely related to the inclined angle of the surface. Experimental results on oblique angle deposition of metal thin films followed by thermal dewetting also support these effects.

Molding of glass micro optical components (유리 마이크로 광부품 어레이의 성형)

  • 최우재;강신일
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.76-79
    • /
    • 2003
  • Glass molding is an advantageous method to manufacture glass micro optical components. However, it is difficult to make tungsten carbide core for glass molded micro optics way. We have developed novel method to fabricate tungsten carbide core for glass molding of glass micro optical components. Silicon masters were fabricated by micro machining. Tungsten Carbide cores were fabricated by forming, sintering and coating. Finally we fabricated glass molded V-groove with pitch of 192$\mu\textrm{m}$ and glass microlens way with lens diameter of 36∼225$\mu\textrm{m}$ by the present method.

  • PDF

Micromolding process using PDMS for refractive microlens (Micromolding process에 의한 refractive microlens의 제작)

  • Ahn, Si-Hong;Lee, Sang-Ho;Kim, Min-Soo;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.578-580
    • /
    • 2000
  • Micromolding process에 의한 refractive microlens array를 제작한다. PDMS, UV curable acryl adhesive 등 여러 가지 polymer 재료를 시도한다. 기존의 공장에서 주로 사용되던 etched bulk silicon, electroplated metal 등의 구조물이 아닌, polymer 구조물을 mold로 사용한다. Micromolding process에 의해 제작되는 microlens의 특성은 mold의 험상에 의해 결정된다. Reflow 공정에 의해 제작된 photoresist microlens는 매우 우수한 표면 특성과 형상 대칭성을 보여주므로, microlens의 mold로서 사용하기에 적합하다.

  • PDF

Micro-lens Patterned LGP Injection Mold Fabrication by LIGA-reflow Process (LIGA-reflow 응용 Micro-lens Pattern 도광판 금형 제작)

  • Hwang C.J.;Kim J.D.;Chung J.W.;Ha S.Y.;Lee K.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.241-244
    • /
    • 2004
  • Microlens patterned micro-mold fabrication method for Light Guiding Plate(LGP), kernel part of LCD-BLU(Back Light Unit), was presented. Instead of erosion dot pattern for LCP optical design, microlens pattern, fabricated by LIGA-reflow process, was applied. Optical pattern design method was also developed not only for negative pattern LGP, but also positive pattern LGP. In order to achieve flow balance during the micro-injection molding process and dimensional accuracy, two LGP pattern was made in one micro-mold.

  • PDF

Light extraction efficiency enhancement on organic light-emitting device by microlens array attachment: a systematic approach

  • Hsu, Sheng-Chih;Chen, Kuan-Yu;Lin, Hoang-Yan;Lee, Jiun-Haw;Lin, Chung-Yu;Wei, Mao-Kuo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1819-1824
    • /
    • 2006
  • A microlens arrays formed by thermal reflow method is attached to an OLED device and the light extraction efficiency which includes luminance and power information is determined by adjusting the area ratio and the height ratio.

  • PDF

MICROLENS MASSES FROM 1-D PARALLAXES AND HELIOCENTRIC PROPER MOTIONS

  • Gould, Andrew
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.6
    • /
    • pp.215-218
    • /
    • 2014
  • One-dimensional (1-D) microlens parallaxes can be combined with heliocentric lens-source relative proper motion measurements to derive the lens mass and distance, as suggested by Ghosh et al. (2004). Here I present the first mathematical anlysis of this procedure, which I show can be represented as a quadratic equation. Hence, it is formally subject to a two-fold degeneracy. I show that this degeneracy can be broken in many cases using the relatively crude 2-D parallax information that is often available for microlensing events. I also develop an explicit formula for the region of parameter space where it is more difficult to break this degeneracy. Although no mass/distance measurements have yet been made using this technique, it is likely to become quite common over the next decade.

CCD Scanning type MTF Measuring System for Microlens Arrays (CCD를 이용한 미세렌즈의 MTF 측정)

  • 이윤우;조현모;이인원;박태호;윤성균;서형원
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.364-371
    • /
    • 1994
  • Real-time MTF measuring system for testing microlens arrays with a linear CCD array is developed. The spread function of slit image that is relayed and magnified by a microscopic object lens can be measured at several times in a second. The signal uniformity and MTF of CCD is also calibrated. The experimental result of micro lens arrays developed for contact image sensor is presented.sented.

  • PDF

Improvement of surface quality of Tungsten-carbide core for glass micro molding (미세 유리 광부품 성형용 초경합금 코어의 표면거칠기 향상에 관한 연구)

  • Lee J.;Kim W.;Min B.;Kang S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.36-39
    • /
    • 2004
  • Glass molding is an advantageous method to manufacture glass micro optical components. However, it is difficult to make Tungsten Carbide core for glass microlens array. We have developed novel method to fabricate Tungsten Carbide core for micro glass components using pressure forming. Silicon masters were fabricated by micro machining. Tungsten Carbide core was fabricated by pressure forming and sintering. And we made high quality surface of Tungsten Carbide core by using the magnetic-field-assisted polishing process.

  • PDF