• 제목/요약/키워드: microhole

검색결과 29건 처리시간 0.026초

Voltammetric Studies of Anion Transfer Reactions Across a Microhole Array-Water/PVC-NPOE Gel Interface

  • Hossain, Md. Mokarrom;Girault, Hubert H.;Lee, Hye-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1734-1740
    • /
    • 2012
  • Voltammetric characterization of hydrophilic anion transfer processes across a 66 microhole array interface between the water and polyvinylchloride-2-nitrophenyloctylether gel layer is demonstrated. Since the transfer of hydrophilic anions including $Br^-$, $NO_3{^-}$, $I^-$, $SCN^-$ and $ClO_4{^-}$ across the liquid/gel interface usually sets the potential window within a negative potential region, a highly hydrophobic organic electrolyte, tetraoctylammonium tetrakis(pentafluorophenyl)borate, providing a wider potential window was incorporated into the gel phase. The transfer reaction of perchlorate anions across the microhole-water/gel interface was first studied using cyclic voltammetry and differential pulse voltammetry. The full voltammetric response of perchlorate anion transfer was then used as a reference for evaluating the half-wave transfer potentials, the formal transfer potentials and the formal Gibbs transfer energies of more hydrophilic anions such as $Br^-$, $NO_3{^-}$, $I^-$, and $SCN^-$. The current response associated with the perchlorate anion transfer across the micro-water/gel interface versus the perchlorate concentration was also demonstrated for sensing applications.

방사광 LIGA 공정을 이용한 플라스틱 성형용 마이크로 금형 제작 (Manufacturing of Micromolds for Plastic Molding Technologies via Synchrotron LIGA Process)

  • 이봉기;김종현
    • 한국기계가공학회지
    • /
    • 제14권4호
    • /
    • pp.1-7
    • /
    • 2015
  • In the present study, copper micromolds with a microhole array were precisely manufactured by a synchrotron LIGA process. Like in the traditional LIGA process, a deep X-ray lithography based on a synchrotron radiation was employed as the first manufacturing step. Due to the excellent optical performance of the synchrotron X-ray used, cylindrical micropillar arrays with high aspect ratio could be efficiently obtained. The fabricated microfeatures were then used as a master of the subsequent copper electroforming process, thereby resulting in copper micromolds with a microhole array. Thermoplastic hot embossing experiments with the copper micromolds were carried out for imprinting cylindrical microfeatures onto a polystyrene sheet. Through the hot embossing, the effect of embossing temperature and usefulness of the present manufacturing method could be verified.

마이크로니들을 이용한 경피약물전달의 피부 미용학적 접근 (A Study on Transdermal Drug Delivery System with Microneedle System in the Field of Skin Care)

  • 김성준
    • KSBB Journal
    • /
    • 제26권4호
    • /
    • pp.277-282
    • /
    • 2011
  • The penetration of outside material into skin is not easy. It is since the skin, which is a very hard barrier, protects the body against outside chemical and physical stimulation. Microneedle system which can help improve drug penetration into skin is advancing variously in transdermal drug delivery system (TDDS) in the field of skin care. After inserting microneedle into skin by using electrical or artificial forces, it makes microhole and drug penetration easily and induces natural skin rejuvenation. Diffusion and penetration of drug by optical and electrical force of microneedle is better for fast and effective TDDS. This is more developed than the traditional method such as the manual stamp, roller, and meso gun. The drug absorbed into dermal layer by microneedle helps revive and repair damaged skin. In the future, utilization of microneedle for skin care will progress constantly because of its human-friendly biodegradable materials and the development of the no pain microneedle.

미소결함을 갖는 탄소강재의 피로파괴거동 (Behavior of Fatigue Fracture for Carbon Steel with Surface Flaw)

  • 송삼홍;오환섭
    • 한국해양공학회지
    • /
    • 제3권2호
    • /
    • pp.601-601
    • /
    • 1989
  • The behavior of fatigue was studied by using low carbon steel bar with microhole(artificial small defect) under the condition of rotary bending stress which is made artificially at smooth surface and round notch root. The results obtained can be summerized; The behavior of non-propagating cracks which are produced at both tips of small defect occurred to dissymmetry, and it is found to be double size of small defect. For the range of l>lc, threshold stress intensity is constant. However, for the range of l

미소결함을 갖는 탄소강재의 피로파괴거동 (Behavior of Fatigue Fracture for Carbon Steel with Surface Flaw)

  • 송삼홍;오환섭
    • 한국해양공학회지
    • /
    • 제3권2호
    • /
    • pp.101-107
    • /
    • 1989
  • The behavior of fatigue was studied by using low carbon steel bar with microhole(artificial small defect) under the condition of rotary bending stress which is made artificially at smooth surface and round notch root. The results obtained can be summerized; The behavior of non-propagating cracks which are produced at both tips of small defect occurred to dissymmetry, and it is found to be double size of small defect. For the range of l>lc, threshold stress intensity is constant. However, for the range of l

  • PDF

깊은 구멍 가공을 위한 가공액 초음파 가진 미세 방전가공 (Micro EDM with Ultrasonic Work Fluid Vibration for Deep Hole Machining)

  • 제성욱;이해성;주종남;김덕환
    • 한국정밀공학회지
    • /
    • 제22권7호
    • /
    • pp.47-53
    • /
    • 2005
  • Microholes with high aspect ratio are required in microstructures. Among various methods for producing the microhole, micro electrical discharge machining (MEDM) is very effective and useful process. But, it is difficult to machine the high aspect ratio holes below $100\;{\mu}m$ in diameter because machining condition becomes unstable due to bad removal of debris at deep hole. In this paper, ultrasonic vibration is applied to MEDM work fluid to make a high aspect ratio micro hole. It is shown that the vibration is effective in circulating the debris and increasing the machining rate. As a result, produced was a micro hole with $92\;{\mu}m$ entrance diameter, $81\;{\mu}m$ exit diameter and aspect ratio 23.