• Title/Summary/Keyword: microgrid

Search Result 344, Processing Time 0.03 seconds

The economic based Program for Remote Microgrid Design (경제성평가에 의한 독립형 마이크로그리드의 설계프로그램 개발)

  • Lee, Hak-Ju;Jung, Won-Wook;Chu, Ceol-Min
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.219-222
    • /
    • 2009
  • Microgrid is a small-scale power system composed of distributed generators, energy storage system and loads, and can operate in the grid-connected mode and the islanded mode. This paper presents optimal design procedures for remote microgrid. The design program is based on the economic evaluations including the feasibility study module, optimal combination and allocation of DER, power network design and the reduction of the GHG emmission. This program which is suggested in this paper shows good performance as a tool of remote microgrid design.

  • PDF

Stability Improvement of Battery Energy Storage System considering Synchronous Inductance Effect of Diesel Generator

  • Jo, Jongmin;An, Hyunsung;Chun, Kwan-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2254-2261
    • /
    • 2018
  • This paper analyzes stability of current control in respect of four cases of battery energy storage system (BESS) in a stand-alone microgrid. The stand-alone microgrid is composed of BESS, diesel generator and controllable loads, where all of them have a rated power of 50kW. The four cases are considered as following: 1) BESS with a stiff grid 2) BESS with the diesel generator 3) BESS with passive damping + diesel generator 4) BESS with active damping + diesel generator, and their stabilities are analyzed in the frequency domain and discrete time domain. The comparative analysis for four cases are verified through simulation and experiments through demonstration site of the stand-alone microgrid, where the DC link is connected to a 115kW battery bank composed of 48 lead-acid batteries (400AH/12V). Experimental results show a good agreement with the analysis.

Optimal Power Scheduling in Multi-Microgrid System Using Particle Swarm Optimization

  • Pisei, Sen;Choi, Jin-Young;Lee, Won-Poong;Won, Dong-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1329-1339
    • /
    • 2017
  • This paper presents the power scheduling of a multi-microgrid (MMG) system using an optimization technique called particle swarm optimization (PSO). The PSO technique has been shown to be most effective at solving the various problems of the economic dispatch (ED) in a power system. In addition, a new MMG system configuration is proposed in this paper, through which the optimal power flow is achieved. Both optimization and power trading methods within an MMG are studied. The results of implementing PSO in an MMG system for optimal power flow and cost minimization are obtained and compared with another attractive and efficient optimization technique called the genetic algorithm (GA). The comparison between these two effective methods provides very competitive results, and their operating costs also appear to be comparable. Finally, in this study, power scheduling and a power trading method are obtained using the MATLAB program.

The Development & Performance Test of 10[kW] Power Conditioning System for Microgrid (마이크로그리드용 10[kW] PCS 개발 및 성능시험)

  • Lee, Hak-Ju;Chae, Woo-Kyu;Park, Jung-Sung;Kim, Ju-Yong;Kim, Chan-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.7
    • /
    • pp.55-62
    • /
    • 2011
  • PCS(Power Conditioning System) is the necessary component in Microgrid, composed of multiple distributed generators and energy storage system. In this paper, the functions of PCS are defined and 10[kW] PCS for PV and BESS are developed. To apply PCSs to Microgrid, this paper presents a 3-phase inverter with the decoupling current controller, voltage controller and DPLL control system. PCSs were applied to 120[kW] pilot plant and its performance tests were carried out. Test results of PCS at each operation mode show stable in Microgrid.

Analog Controller for Battery to Stabilize DC-bus Voltage of DC-AC Microgrid

  • Dam, Duy-Hung;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.66-67
    • /
    • 2014
  • Stabilization of the DC bus voltage is an important task in DC-AC microgrid system with renewable energy source such as solar system. A battery energy storage system (BESS) has become a general solution to stabilize the DC-bus voltage in DC-AC microgrid. This paper develops the analog BESS controller which requires neither computation nor dc-bus voltage measurement, so that the system can be implemented simply and easily. Even though others methods can stabilize and control the DC-bus voltage, it has complicated structure in control and low adaptive capability. The proposed topology is simple but is able to compensate the solar source variation and stabilize the DC-bus voltage under any loads and distributed generation (DG) conditions. In addition, the design of analog controller is presented to obtain a robust system. In order to verify the effectiveness of the proposed control strategy, simulation is carried out by using PSIM software.

  • PDF

EMTP Modeling and Dynamic Analysis of Microturbine Based Microsource for Application to Microgrid (마이크로그리드 적용을 위한 마이크로터빈 기반 마이크로소스의 EMTP 모델링과 동특성 시뮬레이션)

  • Jyung, Tae-Young;Baek, Young-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.42-48
    • /
    • 2009
  • Microgrid supplies loads with power interconnected grid. And it is defined a independent power system compounded micro sources over two devices which have enough capacity to operate independently, storage devices and loads. The energy sources of micro source have different dynamic characteristics corresponding to classes and application skills. However their transient responses are various from a few seconds to minutes. Therefore it is limitation for understanding operation characteristics of microsource modeling constant voltage source or constant current source. This paper shows that we designed EMTP/RV model of micro source which is microturbine based energy source. And we performed dynamic analysis of micro source corresponding to operation mode of microgrid.

A Study on the Grid-Interfacing Storage System for Migrating Customers with Renewable Energy Sources into Microgrid (신재생에너지가 설치된 수용가의 마이크로그리드 구현을 위한 그리드-인터페이스 에너지 저장장치에 관한 연구)

  • Lee, Kyebyung;Son, Kwang-Myoung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.5
    • /
    • pp.46-53
    • /
    • 2013
  • This paper introduces a grid-interactive storage system to operate the customers without voltage source inverters as a microgrid. The proposed storage system does not require any modification of the control scheme of the inverters existing within the customers. Novel control scheme of the grid-interfacing storage system according to its new structure ensures the seamless transition between the grid-connected and islanded operation of the microgrid.

Design of Coordinated Frequency Control Strategy applied to EDLC and BESSs for Microgrid in the Islanded Mode (독립운전 모드의 마이크로그리드에서 EDLC와 BESS의 주파수 협조제어전략 설계)

  • Yoo, Hyeong-Jun;Kim, Hak-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.820-827
    • /
    • 2014
  • Since a microgrid has renewable energy sources, imbalance between power supply and power demand occurs in the islanded mode. In order to solve the imbalance, several energy storage systems (ESSs) such as bettary energy storage system (BESS), EDLC (electric double layer capacitor), flywheel, and SMES (superconducting magnetic energy storage) are generally used. Especially, their electrical characteristics are different. For efficient use of them, a coordinated control scheme is required. In this paper, a coordinated control scheme for using a Lead-acid BESS, a Lithium BESS, and a EDLC is designed to efficient frequency control for a microgrid in the islanded mode. The coordinated frequency control strategy is designed based on their electrical characteristics. The feasibility of the proposed coordinated frequency control strategy is verified through the simulation.

An Enhanced PCC Harmonic Voltage Mitigation and Reactive Power Sharing in Islanded Microgrid

  • Pham, Minh-Duc;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.138-140
    • /
    • 2018
  • Parallel distributed generators (DGs) in the islanded microgrid are generally operated autonomously by means of the droop control scheme. However, the traditional droop control methods which use the P-${\omega}$ and Q-E curve to share power between DGs are still concerned to improve the accuracy of reactive power sharing. Moreover, the uncontrolled harmonic power reduces the point of common coupling (PCC) voltage quality and microgrid stability. In order to solve these problems, this paper proposes an enhanced PCC harmonic control strategy and an improved reactive power sharing control scheme. Based on the low bandwidth communications, a secondary control is implemented with both central controller and local controller. The effectiveness of the proposed control scheme is analyzed through the simulation.

  • PDF

Protection Coordination Strategy of Microgrid Demonstration Site (마이크로그리드 실증사이트의 보호협조 전략)

  • Jin, Dae-Geun;Choi, Won-Jun;Won, Dong-Jun;Lee, Hak-Ju;Chae, Woo-Kyu;Park, Jung-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.966-973
    • /
    • 2012
  • In microgrid demonstration site, distributed generations can make bidirectional power flows on the system. If an accident occurs, the fault current from the inverter based distributed generation is small. However, the conventional protection scheme in distribution network is designed to operate at high fault current. This means that the traditional protection of distribution network is no longer applicable and new protection methods must be developed. In this paper, for two cases, algorithms for protection coordination of demonstration site is proposed and verified through PSCAD/EMTDC simulation. In first case, protection devices are assumed to have the abilities of directional relaying and communication. In second case, protection devices do not have those abilities. Proposed protection coordination algorithms detect the fault locations and protect the microgrid fairly well.