• Title/Summary/Keyword: microglia cells

Search Result 197, Processing Time 0.036 seconds

Anti-neuroinflammatory effects of cultivated red ginseng with fermented complex mushroom-cereal mycelium on lipopolysaccharide activated BV2 microglial cells (LPS로 인해 활성화된 BV2 Microglia에서 발효 복합버섯-곡물 숙성균주 배양 홍삼(紅蔘)의 뇌신경염증 보호효과)

  • Bitna, Kweon;Jin-Young, Oh;Dong-Uk, Kim;Mi-Kyung, Jang;Jun-Hyoung, Cho;Sung-Joo, Park;Gi-Sang, Bae
    • The Korea Journal of Herbology
    • /
    • v.38 no.1
    • /
    • pp.11-19
    • /
    • 2023
  • Objectives : Neuroinflammation is a common pathological mechanism of neurodegenerative diseases, and the development of therapeutic agents is urgently needed. Red ginseng has been known to be good for the immune stimulation in Eastern Asia. Although the immuno-stimulatory activity of red ginseng are already known, the neuro-protective effects of cultivated red ginseng with fermented complex mushroom-cereal mycelium (RGFM) have not been conducted. Thus, in this study, we tried to investigate the anti-neuroinflammatory effect of RGFM water extract on lipopolysaccharide (LPS) stimulated BV2 cells. Methods : BV2 cells were pretreated with RGFM 1 h prior to LPS exposure. To determine the neuro-protective effects of RGFM water extract, we measured the expression of inflammatory mediators including inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and nitric oxide (NO) and pro-inflammatory cytokines such as interleukin (IL)-1𝛽, IL-6 and tumor necrosis factor (TNF)-𝛼 in LPS-stimulated BV2 cells. In addition, to find out the regulatory mechanism of RGFM water extract, we assessed the protein levels of mitogen-activated protein kinases (MAPKs) and inhibitory 𝜅B𝛼 (I𝜅B𝛼) by western blotting. Results : In our study, treatment of RGFM reduced the mRNA expression of iNOS and COX-2 and suppressed NO production in LPS-stimulated BV2 cells. Additionally, the secretion of IL-1𝛽 and TNF-𝛼 but not IL-6 was significantly inhibited by RGFM. Furthermore, RGFM water extract inhibited the phosphorylation of c-Jun N-terminal kinase (JNK). Conclusions : Taken together, these findings suggest that RGFM water extract has a protective effect on neuroinflammation through inhibition of JNK.

Inhibitory Effect of Protaetia brevitarsis seulensis Ethanol Extract on Neuroinflammation in LPS-stimulated BV-2 Microglia (LPS에 의해 활성화된 미세아교세포에서 흰점박이꽃무지 에탄올 추출물의 신경염증 억제 효과)

  • Lee, Hwa Jeong;Seo, Minchul;Lee, Joon Ha;Kim, In-Woo;Kim, Sun Young;Hwang, Jae-Sam;Kim, Mi-Ae
    • Journal of Life Science
    • /
    • v.29 no.10
    • /
    • pp.1096-1103
    • /
    • 2019
  • Neuroinflammation is mediated by the activation of microglia and has been implicated in the pathogenesis of neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease. Therefore, the inhibition of neuroinflammation may be an effective solution to treat these brain disorders. Protaetia brevitarsis seulensis is an insect belonging to the order Coleoptera and inhabits Korea, China, Japan and Siberia. P. brevitarsis seulensis is an edible insect that can be consumed as a protein source for humans. It has been reported that P. brevitarsis seulensis contains useful bioactive substances for hepatoprotection and improving blood circulation, such as indole alkaloids. Microglia cells are the main source of proinflammatory cytokines and nitric oxide (NO) in the central nervous system, which Perform neuroimmune, inflammatory, and other neurobilogical functions. In this study, we investigated the anti-neuroinflammatory effects of P. brevitarsis seulensis ethanol extract (PBE) in activated microglia cells treated with lipopolysaccgarude (LPS, 100 ng/ml). As a result, PBE significantly inhibited NO production without cytotoxicity and decreased the expression levels of inducible NO synthase and cyclooxygenase-2. In addition, the production of inflammatory cytokine secreted by LPS was also reduced by PBE. These results suggest that PBE could be a good source of functional substances to prevent neuroinflammation and neurodegenerative diseases.

Ipomoea aquatic Extracts (IAE) Attenuated Microglial Inflammation via Nrf2 Signaling (공심채 추출물(IAE)의 LPS로 유도된 미세아교세포에서의 Nrf2기전을 통한 항염증 효과)

  • Jiwon Choi;Sang Yoon Choi;Jinyoung Hur
    • Journal of the Korean Society of Food Culture
    • /
    • v.38 no.5
    • /
    • pp.365-372
    • /
    • 2023
  • Ipomoea aquatic is a leafy vegetable of the Convolvulaceae family, and is a tropical plant widely inhabiting southern China and Southeast Asia, and is widely known as Morning Glory in the West. In this study, the anti-inflammatory effects of ethyl acetate extract from Ipomoea aquatic extracts (IAE) were tested against lipopolysaccharide (LPS)-induced activation microglia BV2 cells. The production of nitric oxide (NO) and cell viability were measured using the Griess reagent and MTT assay, respectively. Inflammatory cytokine [interleukin (IL)-6, tumor necrosis factor (TNF)-α, and interleukin-1β (IL-1β)] were detected qPCR in LPS induced BV-2 cells. Subsequently, nuclear factor (NF)-κB, mitogen-activated protein kinases (MAPKs), and nuclear factor erythroid-2-related factor 2 (Nrf2) were analyzed through western blot analyses and immunofluorescence. Ipomoea aquatic down-regulated of inflammatory markers and up-regulated anti-inflammatory and anti-oxidants in BV2 cells.

Yangkyuksanhwa-Tang Attenuates Ischemic Brain Injury in a Focal Photothrombosis Stroke Model (뇌허혈 마우스모델에서 양격산화탕이 뇌 손상 완화에 미치는 효과)

  • Han, Do-Kyung;Pak, Malk-Eun;Kwon, Ok-Sun;Choi, Byung-Tae
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1258-1266
    • /
    • 2019
  • Yangkyuksanhwa-Tang (YKSH), consisting of nine different herbs, is commonly used in Soyangin-type individuals with stroke, based on the Sasang Constitution Theory in Korea. However, no evidence has yet confirmed a beneficial effect of YKSH in ischemic stroke treatment. In this study, we investigated the effects of YKSH on ischemic brain injury in a mouse model of cerebral ischemia. Focal cerebral ischemia in mice was induced by photothrombosis, and behavioral recovery was evaluated. Infarct volume, inflammation, and newly generated cells were evaluated by histology and immunochemistry. YKSH treatment resulted in a significant recovery from the motor impairments induced by focal cerebral ischemia, as determined with wire grip and rotarod tests. YKSH treatment also decreased the infarct volume and the number of cells positive for tumor necrosis factor-${\alpha}$ and myeloperoxidase when compared with a vehicle-treated control group. By contrast, YKSH treatment considerably increased the number of cells positive for glial fibrillary acidic protein and ionized calcium-binding adapter molecule 1, as well as the number of cells doubly positive for Ki67/doublecortin when compared with the vehicle-treated group. These results suggest that YKSH treatment attenuated the infarct size by anti-inflammatory action, astrocyte and microglia activation, and neuronal proliferation, thereby facilitating neurofunctional recovery from a cerebral ischemic assault. YKSH could therefore be a potential treatment for neurofunctional restoration of the injured brains of patients with stroke.

Genomewide Expression Profile of Forsythia Suspensa on Lipopolysaccaride-induced Activation in Microglial Cells

  • Sohn, Sung-Hwa;Ko, Eun-Jung;Kim, Yang-Seok;Shin, Min-Kyu;Hong, Moo-Chang;Bae, Hyun-Su
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.2
    • /
    • pp.113-123
    • /
    • 2008
  • Microglia, which is the primary immune effector cells in the central nervous system, constitutes the first line of defense against infection and injury in the brain. The goal of this study was to determine the protective (anti-inflammation) mechanisms of forsythia suspense (FS) on LPS-induced activation of BV-2 microglial cells. The effects of FS on gene expression profiles in activated BV-2 microglial cells were evaluated using microarray analysis. BV-2 microglial cells were cultured in a 100mm dish $(1{\times}10^7/dish)$ for 24hr and then pretreated with $1{\mu}g/mL$ FS or left untreated for 30 min. Next, $1{\mu}g/mL$ LPS was added to the samples and the cells were reincubated at $37^{\circ}C$ for 30 min, 1hr, and 3hr. The gene expression profiles of the BV-2 microglial cells varied depending on the FS. The oligonucleotide microarray analysis revealed that MAPK pathway-related genes such as Mitogen activated protein kinase 1 (Mapk1), RAS protein activator like 2 (Rasal2), and G-protein coupled receptor 12 (Gpr12) and nitric oxide biosynthesis-related genes such as nitric oxide synthase 1 (neuronal) adaptor protein (Nos1ap), and dimethylarginine dimethylaminohydrolase 1 (Ddah1) were down regulated in FS-treated BV-2 microglial cells. FS can affect the MAPK pathway and nitric oxide biosynthesis in BV-2 microglial cells.

Anti-inflammatory Effects of Metformin on Neuro-inflammation and NLRP3 Inflammasome Activation in BV-2 Microglial Cells

  • Ha, Ji-Sun;Yeom, Yun-Seon;Jang, Ju-Hun;Kim, Yong-Hee;Im, Ji In;Kim, In Sik;Yang, Seung-Ju
    • Biomedical Science Letters
    • /
    • v.25 no.1
    • /
    • pp.92-98
    • /
    • 2019
  • Metformin is a drug used for the treatment of diabetes and is associated with anti-inflammatory reaction, but the underlying mechanism is unclear. In this study, we investigated the effect of metformin on the inflammatory response in BV-2 microglial cells induced by lipopolysaccharide (LPS) and S100 calcium-binding protein A8 (S100A8). The results revealed that metformin significantly attenuated several inflammatory responses in BV-2 microglial cells, including the secretion of pro-inflammatory cytokines, such as tumor necrosis factor-${\alpha}$ and interleukin (IL)-6, involved in the activation of Beclin-1, a crucial regulator of autophagy. In addition, metformin inhibited the LPS-induced phosphorylation of ERK. Metformin also suppressed the activation of NOD-like receptor pyrin domain containing 3 inflammasomes composed of NLRP3, caspase-1, and apoptosis-associated speck like protein containing a caspase recruitment domain, which are involved in the innate immune response. Notably, metformin decreased the secretion of S100A8-induced IL-6 production. These findings suggest that metformin alleviates the neuroinflammatory response via autophagy activation.

Inhibition of lyosphosphatidic acid receptor 1 signaling in periodontal ligament stem cells reduces inflammatory paracrine effect in primary astrocyte cells

  • Kim, Dong Hee;Seo, Eun Jin;Kim, Young Hwan;Jang, Il Ho
    • International Journal of Oral Biology
    • /
    • v.47 no.2
    • /
    • pp.25-31
    • /
    • 2022
  • Lysophosphatidic acid (LPA) is a bioactive lipid messenger involved in the pathogenesis of chronic inflammation and various diseases. Recent studies have shown an association between periodontitis and neuroinflammatory diseases such as Alzheimer's disease, stroke, and multiple sclerosis. However, the mechanistic relationship between periodontitis and neuroinflammatory diseases remains unclear. The current study found that lysophosphatidic acid receptors 1 (LPAR1) and 6 (LPAR6) exhibited increased expression in primary microglia and astrocytes. The primary astrocytes were then treated using medium conditioned to mimic periodontitis through addition of Porphyromonas gingivalis lipopolysaccharides, and an increased nitric oxide (NO) production was observed. Application of conditioned medium from human periodontal ligament stem cells with or without LPAR1 knockdown showed a decrease in the production of NO and expression of inducible nitric oxide synthase and interleukin 1 beta. These findings may contribute to our understanding of the mechanistic link between periodontitis and neuroinflammatory diseases.

Inhibitory Effect of Inflammatory Cytokines Secretion from Brain Neuroglial Cells by RADIX ASPARAGI (천문동(天門冬)에 의한 뇌신경교세포(腦神經膠細胞)로부터 염증성(炎症性) 세포활성물질(細胞活性物質) 분비(分泌)의 억제(抑制) 효과(效果))

  • Kang Heong-Won;Lyu Yeong-Su
    • Journal of Oriental Neuropsychiatry
    • /
    • v.9 no.1
    • /
    • pp.73-82
    • /
    • 1998
  • Substantial evidence has accumulated that Alzheimer's disease is associated with a local inflammatory reaction in senile plaques which may be immunemediated, and includes extensive Brain Neuroglial invasion, lymphocytic infiltration, cytokine deposition. Tumor necrosis factor a (TNF-a) is a cytokine which plays an important immunoenhancing role in the local acute and chronic inflammatory response in response to a variety of stimuli. The neuropeptide, substance P, can stimulate secretion of TNF-a from Brain Neuroglial cells. Neuroglia have substance P receptors in the central nervous system. WQ investigated whether RADIX ASPARAGI inhibits secretion of TNF-a from primary cultures of Brain Neuroglial cells containing both astrocyte (∼90%) and microglia (∼10%). RADIX ASPARAGI dose-dependently inhibited the TNF-a secretion induced by substance P plus lipopolysaccharide (LPS). In cultures enriched for micoglia (>95% pure). LPS stimulated the secretion of TNF-a but substance P caused no enhancement. Because there was no synergism between substance P and LPS in the microglial cultures it is resonable to substance P madiated enhancement of TNF-a secretion. IL-1 is a modulator of TNF-a secretion in the immune system. Also IL-1 has been shown to elevate TNF- a secretion from LPS-stimulated Brain Neuroglial cells while having no effect on Brain Neuroglial cells in the absence of LPS. We therfore investigated whether IL-1 mediates the RADIX ASPARAGI inhibition of TNF-a secretion form primary Brain Neuroglial cells. Treatment of RADIX ASPARAGI to mixed cultures stimulated with both substance P and LPS decreased TNF-a secretion to the level observed with LPS alone. These results indicate that RADIX ASPARAGI possess strong antiinflammatory activity in the cental nervous system by inhibition of inflammatory cytokines secretion from Brain Neuroglial cells.

  • PDF

A Screen for Dual-protection Molecules from a Natural Product Library against Neuronal Cell Death and Microglial Cell Activation (신경세포 사멸과 미세아교세포활성화 억제 동시 가능 천연물질 탐색 연구)

  • Min, Ju-Sik;Lee, Dong-Seok
    • Journal of Life Science
    • /
    • v.25 no.6
    • /
    • pp.656-662
    • /
    • 2015
  • Natural products and natural product structures play a general and highly significant role in drug discovery and development process because it has various merits and potentials for new drug source that have extensive clinical experience, development time contraction, excellent stability and safety. In several neurological disorders, neuronal death and excessive activation of microglia (neuro-inflammation) are observed. A number of drug discovery-related neuronal cell death and neuro-inflammation was studied from natural products, respectively. However, until now, it has not been possible to study dual-protection molecules recorded in the Natural Product library. In the present study, using the natural product-derived library of the Institute for Korea Traditional Medical Industry, we investigated dual-protective molecules against glutamate (a classical excitatory neurotransmitter)-induced oxidative stress mediated neuronal cell death and LPS-induced excessive activated microglial cells (immune cells of the brain). Chrysophanol, extracted from Rheum palmatum, had dual-protective effects against both glutamate-induced neuronal cell death and LPS-induced NO production, triggering proinflammatory cytokines and microglia activation and resulting in neuroinflammation. Flow-cytometry analysis revealed that chrysophanol had a scavenger effect, scavenging glutamate- and LPS-induced reactive oxygen species (ROS) produced by neuronal and microglial cells, respectively. Based on the present study, chrysophanol may have an important protective role against neuronal cell death and neuroinflammation in the brain. The results may be helpful for studying drug development candidates for treating central nervous system disorders.

Inhibitory effect of Petalonia binghamiae on neuroinflammation in LPS-stimulated microglial cells (LPS에 의해 활성화된 미세아교세포에서 미역쇠 추출물의 신경염증 보호 효과)

  • Park, Jae Hyeon;Kim, Sung Hun;Lee, Sun Ryung
    • Journal of Nutrition and Health
    • /
    • v.50 no.1
    • /
    • pp.25-31
    • /
    • 2017
  • Purpose: Neuroinflammation is mediated by activation of microglia implicated in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. Inhibition of neuroinflammation may be an effective solution to treat these brain disorders. Petalonia binghamiae is known as a traditional food, based on multiple biological activities such as anti-oxidant and anti-obesity. In present study, the anti-neuroinflammatory potential of Petalonia binghamiae was investigated in LPS-stimulated BV2 microglial cells. Methods: Cell viability was measured by MTT assay. Production of nitric oxide (NO) was examined using Griess reagent. Expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) was detected by Western blot analysis. Activation of nuclear factor ${\kappa}B$ ($NF-{\kappa}B$) signaling was examined by nuclear translocation of $NF-{\kappa}B$ p65 subunit and phosphorylation of $I{\kappa}B$. Results: Extract of Petalonia binghamiae significantly inhibited LPS-stimulated NO production and iNOS/COX-2 protein expression in a dose-dependent manner without cytotoxicity. Pretreatment with Petalonia binghamiae suppressed LPS-induced $NF-{\kappa}B$ p65 nuclear translocation and phosphorylation of $I{\kappa}B$. Co-treatment with Petalonia binghamiae and pyrrolidine duthiocarbamate (PDTC), an $NF-{\kappa}B$ inhibitor, reduced LPS-stimulated NO release compared to that in PB-treated or PDTC-treated cells. Conclusion: The present results indicate that extract of Petalonia binghamiae exerts anti-neuroinflammation activities, partly through inhibition of $NF-{\kappa}B$ signaling. These findings suggest that Petalonia binghamiae might have therapeutic potential in relation to neuroinflammation and neurodegenerative diseases.