• Title/Summary/Keyword: microfluidic-chip

Search Result 155, Processing Time 0.031 seconds

Development of the Microfluidic Device to Regulate Shear Stress Gradients

  • Kim, Tae Hyeon;Lee, Jong Min;Ahrberg, Christian D.;Chung, Bong Geun
    • BioChip Journal
    • /
    • v.12 no.4
    • /
    • pp.294-303
    • /
    • 2018
  • Shear stress occurs in flowing liquids, especially at the interface of a flowing liquid and a stationary solid phase. Thus, it occurs inside the artery system of the human body, where it is responsible for a number of biological functions. The shear stress level generally remains less than $70dyne/cm^2$ in the whole circulatory system, but in the stenotic arteries, which are constricted by 95%, a shear stress greater than $1,000dyne/cm^2$ can be reached. Methods of researching the effects of shear stress on cells are of large interest to understand these processes. Here, we show the development of a microfluidic device for generating shear stress gradients. The performance of the shear stress gradient generator was theoretically simulated prior to experiments. Through simple manipulations of the liquid flow, the shape and magnitude of the shear stress gradients can be manipulated. Our microfluidic device consisted of five portions divided by arrays of micropillars. The generated shear stress gradient has five distinct levels at 8.38, 6.55, 4.42, 2.97, and $2.24dyne/cm^2$. Thereafter, an application of the microfluidic device was demonstrated testing the effect of shear stress on human umbilical vein endothelial cells.

Microfluidic Biosensor System for HDL Cholesterol

  • Kim, Joo-Eun;Paek, Se-Hwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.717-720
    • /
    • 2003
  • A chromogenic biosensor employing microfluidics on a chip has been developed for the determination of high-density lipoprotein (HDL) cholesterol (HDL-C) in human serum. We have investigated a plain and effective method to immobilize enzymes within the microchip without chemically modifying micro-channel or technically micro-fabricating column reactor and fluid channel network. In assessing risk factors of coronary heart disease, a micro-chip system would minimize requirements of instrument and reagent handling.

  • PDF

Magnetic Sensor-Based Detection of Picoliter Volumes of Magnetic Nanoparticle Droplets in a Microfluidic Chip

  • Jeong, Ilgyo;Eu, Young-Jae;Kim, Kun Woo;Hu, XingHao;Sinha, Brajalal;Kim, CheolGi
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.302-307
    • /
    • 2012
  • We have designed, fabricated and tested an integrated microfluidic chip with a Planar Hall Effect (PHE) sensor. The sensor was constructed by sequentially sputtering Ta/NiFe/Cu/NiFe/IrMn/Ta onto glass. The microfluidic channel was fabricated with poly(dimethylsiloxane) (PDMS) using soft lithography. Magnetic nanoparticles suspended in hexadecane were used as ferrofluid, of which the saturation magnetisation was 3.4 emu/cc. Droplets of ferrofluid were generated in a T-junction of a microfluidic channel after hydrophilic modification of the PDMS. The size and interval of the droplets were regulated by pressure on the ferrofluid channel inlet. The PHE sensor detected the flowing droplets of ferrofluid, as expected from simulation results. The shape of the signal was dependent on both the distance of the magnetic droplet from the sensor and the droplet length. The sensor was able to detect a magnetic moment of $2{\times}10^{-10}$ emu at a distance of 10 ${\mu}m$. This study provides an enhanced understanding of the magnetic parameters of ferrofluid in a microfluidic channel using a PHE sensor and will be used for a sample inlet module inside of integrated magnetic lab-on-a-chip systems for the analysis of biomolecules.

A Study on the MHD Micropump with Mixing Function (혼합 기능을 갖는 마이크로 펌프의 연구)

  • Choi, Bum-Kyoo;Kang, Ho-Jin;Kim, Min-Sock
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.6
    • /
    • pp.579-586
    • /
    • 2010
  • With the development of micrototal analysis systems (${\mu}TAS$), which is a result of enhancement of MEMS technology, rapid progress has been achieved in medical and biological research. The study of lab-on-a-chip (LOC) devices, which are types of ${\mu}TAS$ and which integrate the functions of mixing and analyzing tiny amounts of samples and reagents on one chip, has actively progressed. An LOC comprises microfluidic components such as micromixers and micropumps. Because the flow in a microfluidic system is generally laminar, it is very difficult to efficiently mix and feed fluid reagents. This paper presents the design and the method of fabrication of an MHD micropump for mixing fluids. By using this micropump, fluids are simultaneously mixed and pumped; this is achieved by coupling the Lorentz force and force exerted by an electric charge moving in an electric field.

Fabrication of Collagen Type I Microfiber based on Co-axial Flow-induced Microfluidic Chip (동심축류가 유도되는 미세유체 소자 기반 Collagen Type I 미세섬유의 제작)

  • Lee, Su Kyoung;Lee, Kwang-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.186-194
    • /
    • 2016
  • In this study, a co-axial flow induced microfluidic chip to fabricate pure collagen type I microfiber via the control of collagen type I and Na-alginate gelation process. The pure collagen type I microfiber was generated by selective degradation of Ca-alginate from 'Core-Shell' structured hydrogel microfiber. To make 'Core-Shell' structure, collagen type I solution was introduced into core channel and 1.5% Na-alginate solution was injected into side channel in microfluidic chip. To evaluatethe 'Core-Shell' structure, the red and green fluorescence substances were mixed into collagen type I and Na-alginate solution, respectively. The fluorescence substances were uniformly loaded into each fiber, and the different fluorescence images were dependent on their location. By immoblizing EpH4-Ras and C6 cells within collagen type I and Na-alginate solution, we sucessfully demonstrated the co-culture of EpH4-Ras and C6 cells with 'Core-Shell' like hydrogel microfiber for 5 days. Only to produce pure collagen type I hydrogel fiber, tri-sodium citrate solution was used to dissolve the shell-like Ca-alginate hydrogel fiber from 'Core-Shell' structured hydrogel microfiber, which is an excellent advantage when the fiber is employed in three-dimensional scaffold. This novel method could apply various application in tissue engineering and biomedical engineering.

A STUDY ON THE DEVELOPMENT OF ONE-DIMENSIONAL GUI PROGRAM FOR MICROFLUIDIC-NETWORK DESIGN (마이크로 유동 네트워크 설계를 위한 1차원 GUI 프로그램 개발에 관한 연구)

  • Park, I.H.;Kang, S.;Suh, Y.K.
    • Journal of computational fluids engineering
    • /
    • v.14 no.4
    • /
    • pp.86-92
    • /
    • 2009
  • Nowadays, the development of microfluidic chip [i.e. biochip, micro-total analysis system ($\mu$-TAS) and LOC (lab-on-a-chip)] becomes more active, and the microchannels to deliver fluid by pressure or electroosmotic forces tend to be more complex like electronic circuits or networks. For a simple network of channels, we may calculate the pressure and the flow rate easily by using suitable formula. However, for complex network it is not handy to obtain such information with that simple way. For this reason, Graphic User Interface (GUI) program which can rapidly give required information should be necessary for microchip designers. In this paper, we present a GUI program developed in our laboratory and the simple theoretical formula used in the program. We applied our program to simple case and could get results compared well with other numerical results. Further, we applied our program to several complex cases and obtained reasonable results.

Temperature Measurements in a Microfluidic Chip with Polydiacetylene Sensor (폴리다이아세틸렌을 이용한 미세유동칩 내의 온도 측정)

  • Jang, Young-Sik;Ryu, Sung-Min;Song, Si-Mon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2696-2699
    • /
    • 2008
  • Microfluidic chips have been frequently utilized to perform biochemical analysis, like cell culture, because they reduce the consumptions of analytes and reagents and automate multi-step analysis processes. It is often critical to monitor temperature in a microchannel for the analyses in order to control a reaction condition of bio or chemical molecules. We propose a novel method to monitor temperature of a microchannel flow by using polydiacetylene (PDA), a conjugated polymer, that has a unique property to transform its color from visible blue to fluorescent red by thermal stress. We inject PDA sensor droplets generated by hydrodynamic instability into a microchannel with a microheater incorporated on the channel bottom. Also, we change the channel temperature by providing the different electric power to the microheater. The results show that the florescence intensity of PDA sensor droplets linearly increases in response to the flow temperature increase within a certain range.

  • PDF

Development of Microfluidic Radioimmunoassay Platform for High-throughput Analysis with Reduced Radioactive Waste

  • Jin-Hee Kim;So-Young Lee;Seung-Kon Lee
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.8 no.2
    • /
    • pp.95-101
    • /
    • 2022
  • Microfluidic radioimmunoassay (RIA) platform called µ-RIA spends less reagent and shorter reaction time for the analysis compared to the conventional tube-based radioimmunoassay. This study reported the design of µ-RIA chips optimized for the gamma counter which could measure the small samples of radioactive materials automatically. Compared with the previous study, the µ-RIA chips developed in this study were designed to be compatible with conventional RIA test tubes. And, the automatic gamma counter could detect radioactivity from the 125I labeled anti-PSA attached to the chips. Effects of the multi-layer microchannels and two-phase flow in the µ-RIA chips were investigated in this study. The measured radioactivity from the 125I labeled anti-PSA was linearly proportional to the number of stacked chips, representing that the radioactivity in µ-RIA platform could be amplified by designing the chips with multi-layers. In addition, we designed µ-RIA chip to generate liquid-gas plug flow inside the microfluidic channel. The plug flow can promote binding of the biomolecules onto the microfluidic channel surface with recirculation in the liquid phase. The ratio of liquid slug and air slug length was 1 : 1 when the 125I labeled anti-PSA and the air were injected at 1 and 35 µL/min, respectively, exhibiting 1.6 times higher biomolecule attachment compared to the microfluidic chip without the air injection. This experimental result indicated that the biomolecular reaction was improved by generating liquid-gas slugs inside the microfluidic channel. In this study, we presented a novel µ-RIA chips that is compatible with the conventional gamma counter with automated sampler. Therefore, high-throughput radioimmunoassay can be carried out by the automatic measurement of radioactivity with reduced radiowaste generation. We expect the µ-RIA platform can successfully replace conventional tube-based radioimmunoassay in the future.

Microfluidic Immuno-Sensor Chip using Electrical Detection System (전기 검출 시스템을 이용한 Microfluidic Immuno-Sensor Chip)

  • Maeng, Joon-Ho;Lee, Byung-Chul;Cho, Chul-Ho;Ko, Yong-Jun;Ahn, Yoo-Min;Cho, Nahm-Gyoo;Lee, Seoung-Hwan;Hwang, Seung-Yong
    • KSBB Journal
    • /
    • v.21 no.5
    • /
    • pp.325-330
    • /
    • 2006
  • This study presents the characterization of an integrated portable microfluidic electrical detection system for fast and low volume immunoassay using polystyrene microbead, which are used as immobilization surfaces. In our chip, a filtration method using the microbead was adopted for sample immobilization and immunogold silver staining(IGSS) was used to increase the electrical signal. The chip is composed of an inexpensive and biocompatible Polydimethylsiloxane(PDMS) layer and Pyrex glass substrate. Platinum microelectrodes for electric signal detection were fabricated on the substrate and microchannel and pillar-type microfilters were formed in the PDMS layer. With a fabricated chip, we reacted antigen and antibody according to the procedures. Then, silver enhancer was injected to increase the size of nanogold particles tagged with the second antibody. As a result, microbeads were connected to each other and formed an electrical bridge between microelectrodes. Resistance measured through the electrodes showed a difference of two orders of magnitude between specific and nonspecific immuno-reactions. The detection limit was 10 ng/ml. The developed immunoassay chip reduced the total analysis time from 3 hours to 50 min. Fast and low-volume biochemical analysis has been successfully achieved with the developed microfilter and immuno-sensor chip, which is integrated to the microfluidic system.