• Title/Summary/Keyword: microelectromechanical systems

Search Result 59, Processing Time 0.022 seconds

Applications of MEMS-MOSFET Hybrid Switches to Power Management Circuits for Energy Harvesting Systems

  • Song, Sang-Hun;Kang, Sungmuk;Park, Kyungjin;Shin, Seunghwan;Kim, Hoseong
    • Journal of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.954-959
    • /
    • 2012
  • A hybrid switch that uses a microelectromechanical system (MEMS) switch as a gate driver of a MOSFET is applied to an energy harvesting system. The power management circuit adopting the hybrid switch provides ultralow leakage, self-referencing, and high current handling capability. Measurements show that solar energy harvester circuit utilizing the MEMS-MOSFET hybrid switch accumulates energy and charges a battery or drive a resistive load without any constant power supply and reference voltage. The leakage current during energy accumulation is less than 10 pA. The power management circuit adopting the proposed hybrid switch is believed to be an ideal solution to self-powered wireless sensor nodes in smart grid systems.

A Single-Pole, Eight-Throw, Radio-Frequency, MicroElectroMechanical Systems Switch for Multi-Band / Multi-Mode Front-End Module

  • Kang, Sung-Chan;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.77-81
    • /
    • 2011
  • This paper presents a single-pole eight-throw(SP8T) switch based on proposed a radio-frequency(RF) microelectromechanical systems (MEMS) switches. The proposed switch was driven by a double stop(DS) comb drive, with a lateral resistive contact. Additionally, the proposed switch was designed to have tapered signal line and bi-directionally actuated. A forward actuation connects between signal lines and contact part, and the output becomes on-state. A reverse actuation connects between ground lines and contact part, and the output becomes off-state. The SP8T switch of 3-stage tree topology was developed based on an arrangement of the proposed RF MEMS switches. The developed SP8T switch had an actuation voltage of 12 V, an insertion loss of 1.3 dB, a return loss of 15.1 dB, and an isolation of 31.4 dB at 6 GHz.

Investigation of Thermal Fusion Bonding and Separation of PMMA Substrates by using Molecular Dynamics Simulations (분자동역학을 이용한 PMMA 평판의 열접합 및 분리에 대한 연구)

  • Yi, Taeil
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.111-116
    • /
    • 2018
  • Thermal fusion bonding is a method to enclose open microchannels fabricated on polymer chips for use in lab-on-a-chip (LOC) devices. Polymethyl methacrylate (PMMA) is utilized in various biomedical-microelectromechanical systems (bio-MEMS) applications, such as medical diagnostic kits, biosensors, and drug delivery systems. These applications utilize PMMAs biochemical compatibility, optical transparency, and mold characteristics. In this paper, we elucidate both the conformational entanglement of PMMA molecules at the contact interfacial regime, and the qualitative nature of the thermal fusion bonding phenomena through systematic molecular dynamics simulations.

Development and Estimation of Low Price-Small-Autopilot UAS for Geo-spatial Information Aquisition (지형정보획득용 저가 소형 자동항법 UAS개발 및 평가)

  • Han, Seung Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1343-1351
    • /
    • 2014
  • Recent technological advances in wireless networks and microelectromechanical systems (MEMS) have led to the development of different types of mini-UAVs and their utilizations in various ways. This study endeavors to develop a low-cost mini-UAV with autonomous flight capability, in order to obtain geospatial information of a small or medium-sized area, and also assess its flight stability by comparing the predetermined flight paths against the actual flight paths. Based on a post-development flight test, stable flight has been proven achievable as follows: the maximum endurance speed is 1 hour, the flying distance is 50km, the horizontal accuracy of flight paths is about ${\pm}6{\sim}8m$, and the altitude accuracy is about ${\pm}8m$. Therefore, it is deemed that high-resolution images which can be utilized for geospatial information are obtainable. This indicates that a UAV flying at an altitude of 200m can acquire images across a $2km{\times}3km$ area on the ground within 25 minutes, which validates its high usability for obtaining high-solution images at low altitudes in the future.

Comparison of the Tribological behaviors of Various Organic Molecular Films (다양한 유기분자막의 마찰특성 비교)

  • ;;;V. Tsukruk
    • Tribology and Lubricants
    • /
    • v.17 no.5
    • /
    • pp.386-390
    • /
    • 2001
  • Monolayers such as self-assembled monolayer (SAM) have received considerable attention to reduce stiction and friction in micro-devices and microelectromechanical systems (MEMS). Various organic molecular films were investigated to obtain better understanding of their tribological behaviors and adhesion property. The organic molecular films studied in this work are: epoxysilane SAMs, octadecyltricholosilane (OST), multi-layers composed of epoxysilane SAMs, poly[styrene-b-(ethylene-co-butylene)-b-styrene](SEBS) and compound of epoxy resin and poly (paraphenylene)(EP/PPP). The pull-off forces of these films were also obtained from force-distance curves measured in static mode of operation of atomic force microscope(AFM). Tribological tests were conducted with a ball-on-flat reciprocating friction tester. The OST showed the lowest pull-off force, indicating its low adhesion property. It was revealed that, the OST, EP/PPP and the multi-layer of epoxysilane SAMs, SEBS and EP/PPP exhibited good tribological properties at the lower load (0.3 N) whereas the OST showed best performance at the higher load (1.8 N).

The Static and Dynamic Performance of a MEMS/MST Based Gas-Lubricated proceeding Bearing with the Slip Flow Effect

  • Kwak, H.-D.;Lee, Y.-B.;Kim, C.-H.;Lee, N.-S.;Choi, D.-H.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.103-104
    • /
    • 2002
  • The influence of the slip flow on the MEMS/MST based gas-lubricated proceeding bearing is investigated. Based on the modified Reynolds equation, the numerical analysis of the finite difference method was developed by applying the first order slip flow approximation. The numerical prediction of bearing performance provides the significant results concerning the slip flow effect in micro scale gas-lubricated proceeding bearing. The result indicates that the load-carrying capacity as well as the rotordynamic coefficients were significantly reduced due to the slip flow. Through this work, it is concluded that the slip flow effect could not be ignored in the micro gas-lubricated proceeding bearing.

  • PDF

Non-Destructive Evaluation of Material Properties of Nanoscale Thin-Films Using Ultrafast Optical Pump-Probe Methods

  • Kim, Yun-Young;Krishnaswamy, Sridhar
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.2
    • /
    • pp.115-121
    • /
    • 2012
  • Exploration in microelectromechanical systems(MEMS) and nanotechnology requires evaluation techniques suitable for sub-micron length scale so that thermal and mechanical properties of novel materials can be investigated for optimal design of miro/nanostructures. The ultrafast optical pump-probe technique provides a contact-free and non-destructive way to characterize nanoscale thin-films, and its ultrahigh temporal resolution enables the study of heat-transport phenomena down to a sub-picosecond regime. This paper reviews the principle of optical pump-probe technique and introduces its application to the area of micro/nano-NDE.

Patterning of CVD Diamond Films For MEMS Application

  • Wang, Xiaodong;Yang, Yirong;Ren, Congxin;Mao, Minyao;Wang, Weiyuan
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.167-170
    • /
    • 1998
  • To apply diamond films in microelectromechanical systems(MEMS), it is necessary to develop the patterning technologies of diamond films in the micrometer scale. In this paper, three different kinds of technologies for patterning CVD diamond films carried out by us were demonstrated: selective growth by improved diamond nucleation in DC bias-enhanced microwave plasma chemical vapor deposition (MPCVD) system, selective growth of seeding using diamond-particle-mixed photoresist, and selective etching of oxygen ion beam using Al as the mask. It was show that high selectivity and precise patterns had been achieved, and all the processes were compatible with IC process.

  • PDF

Comparison of Attitude Estimation Methods for DVL Navigation of a UUV (UUV의 DVL 항법을 위한 자세 추정 방법 비교)

  • Jeong, Seokki;Ko, Nak Yong;Choi, Hyun-Taek
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.4
    • /
    • pp.216-224
    • /
    • 2014
  • This paper compares methods for attitude estimation of a UUV(Unmanned Underwater Vehicle). Attitude estimation plays a key role in underwater navigation using DVL(Doppler Velocity Log). The paper proposes attitude estimation methods using EKF(Extended Kalman Filter), UKF(Unscented Kalman Filter), and CF(Complementary Filter). It derives methods using the measurements from MEMS-AHRS(Microelectromechanical Systems-Attitude Heading Reference System) and DVL. The methods are used for navigation in a test pool and their navigation performance is compared. The results suggest that even if there is no measurement relative to some absolute landmarks, DVL-only navigation can be useful for navigation in a limited time and range.

ROIC Technology Trends for Sensors (센서 ROIC 기술 동향)

  • Roh, T.M.;Jeon, Y.D.;Lyuh, C.G.;Cho, M.H.;Kim, Y.G.;Kwon, J.K.
    • Electronics and Telecommunications Trends
    • /
    • v.28 no.5
    • /
    • pp.83-92
    • /
    • 2013
  • IT 기술이 발달함에 따라 저전력, 초소형 센서노드를 설치하여 무인으로 정보를 얻을 수 있는 시스템의 도입이 점차 확대되는 추세이며, 이것을 위하여 온도, 습도, 가스 등 환경정보를 획득할 수 있는 센서뿐만 아니라 초소형 저전력 복합환경센서 ROIC(Read-Out Integrated Circuit)의 중요성이 증가하고 있다. 또한 휴대폰, 노트북, 스마트폰, 태블랫 PC 등의 모바일 IT 제품들은 빠르게 소형화, 슬림화, 저전력화 되고 있다. 이런 시스템의 요구에 따라 음향부품도 기본적인 음향감지/출력 성능 이외에 크기 및 소모전력이 중요한 기능요소로 크게 부각되고 있으며, 이것을 위하여 소형화, 저가격화가 가능한 MEMS(Microelectromechanical Systems) 음향센서 및 ROIC 개발이 요구되고 있다. 따라서 본고에서는 복합환경센서 ROIC 및 MEMS 마이크로폰 ROIC의 기술동향 등에 대해서 고찰하고자 한다.

  • PDF