• Title/Summary/Keyword: microchip

Search Result 136, Processing Time 0.032 seconds

Improvement of efficiency ot Nd-type microchip laser by dissipative heat reduction (소모적 열감소에 따른 Nd형 마이크로칩 레이저의 효율 증가)

  • Jang, Won-Kweon;Yu, Young-Moon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1011-1013
    • /
    • 2003
  • 대개의 Nd형 레이저 광소자는 $^4F_{5/2}$의 준위로 펌핑하여 양자효율이 떨어지며, 소모적 열의 발생으로 마이크로칩 레이저의 높은 펌핑 밀도에 의한 열발생을 유도한다. 그러나 $^4F_{5/2}$ 준위로의 직접 펌핑은 소모적 열발생을 획기적으로 줄일 뿐 아니라 이로 인한 레이저 발진 효율의 증가를 가능하게 하였다. Nd:LSB 마이크로칩 레이저의 경우 공진기 구성에 따라 6-11%의 기울기 효율이 상승하였다.

  • PDF

Design and Characteristics of a Chip Antenna for Bluetooth (Bluetooth용 Chip Antenna설계 및 특성 고찰)

  • 고영혁
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.5
    • /
    • pp.47-52
    • /
    • 2004
  • In this paper we fabricated microchip antenna operating in bluetooth frequency bands(2.402∼2.4800㎓). The antenna has a size of about 54mm${\times}$19mm${\times}$0.8mm giving a total bluetooth PCB for suuort and chip of about 11mm${\times}$4mm${\times}$1.6mm. Bandwidth of the designed and fabricated chip antenna for bruetooth is 10.71% at the resonated frequency of 2.45㎓ and the resonant frequency and bandwidth versus change of my arbitrary fled point is observed. also, E-plane and H-plane in the Measured radiation pattern characteristic of chip antenna is compared and analyzed.

Pet Registration and Information Providing System Utilizing QR Code (QR 코드를 이용한 애완동물 등록 및 정보제공 시스템)

  • Shin, Dong-Eun;Heo, Jun-Mu;Son, Yeong-Bin;Kim, Yong-Seok
    • Journal of Industrial Technology
    • /
    • v.34
    • /
    • pp.33-37
    • /
    • 2014
  • The current companion animal registration system is based on implanting microchip into animal body. Thus, the maintenance cost is high, and it may cause dangerous effect on the animal health. Moreover, it is very inconvenient in utilizing the information. This paper presents a pet registration and information providing system based on QR code for low cost and convenience in field application. The owner can simply register pet information on the web server, print the QR code and attach it to the pet. Any person can scan the QR code by smart phone, identify the information, and call the owner directly.

  • PDF

Amperometric detection of DNA using capillary electrophoresis on microchip (모세관 전기영동 마이크로칩을 이용한 디옥시리보핵산(DNA)의 전류법 검출)

  • Joo, Gi-Sung;Ha, Kon;Jha, Sandeep K.;Lee, Hyun-Ho;Yoon, Tae-Sik;Kang, C.J.;Kim, Yong-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1460-1461
    • /
    • 2008
  • 마이크로칩 형태에서의 모세관 전기영동과 전류법을 이용하여 디옥시리보핵산(DNA) 단편들의 분리 검출하는 실험을 하였다. 마이크로 채널이 형성된 PDMS(polydimethylsiloxane)와 금 전극이 형성된 유리 기판을 접합하여 마이크로칩을 제작하였다. 20V/cm의 전계를 인가하여 100bp-1.5kbp 길이의 DNA 단편을 모세관 전기영동 하였을 때 250초내에 분리 검출되는 것을 확인하였다.

  • PDF

Integrated microfluidic device with polymer-based micropump and microvalve for $\mu$-TAS devices (마이크로 펌프, 밸브가 집적된 폴리머 기반의 미세 유체제어 시스템의 기계적 특성 강화)

  • Ra, Gyu-Sik;Jha, Sandeep Kumar;Yoon, Tae-Sik;Lee, Hyun-Ho;Kim, Yong-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1458-1459
    • /
    • 2008
  • 미세 유체 제어 시스템 (마이크로 펌프, 마이크로 밸브, 마이크로 채널, 마이크로 믹서 등)의 집적은 화학 및 바이오 유체를 제어하는 Lab-on-a-chip 의 일부분으로서 사용되며 이러한 시스템의 집적은 Lab-on-a-chip 개발을 위해 필수적으로 요구된다. 본 논문에서는 이러한 microchip을 구현하기 위해서 초미세 유체 제어 소자인 마이크로 펌프와 마이크로 밸브를 같은 기판 위에 Polydimethylsiloxane (PDMS)와 indium tin oxade (ITO)를 사용하여 집적하였다. 그리고 밸브의 반복 작동 시 계속적인 유량의 감소를 줄이기 위해 PDMS 의 혼합비를 달리하여 PDMS membrane 의 기계적 특성을 강화시켰다.

  • PDF

Fourth and Fifth Harmonic Generations of an Nd:YAG Laser using Nonlinear Optical $LiB_{3}O_{5}$ and $CsLiB_{6}O_{10}$ Crystals (비선형 단결정 $LiB_{3}O_{5}$$CsLiB_{6}O_{10}$을 이용한 Nd:YAG 레이저의 4차 및 5차 조화파 발생)

  • Jang Jong Hun;Kim Ji Won;Yun Chun Seop
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.234-235
    • /
    • 2003
  • All solid-state UV lasers provide efficient, clean and semipermanent light sources for various applications, such as eye surgery, microchip lithography. $CsLiB_{6}O_{10}$ (CLBO) is one of the most suitable crystals for UV generation because of its small walk-off, large effective nonlinear susceptibility in UV region and high damage threshold. We produced fourth (266 nm) and fifth (213 nm) harmonic generation of an Nd:YAG laser (1064 nm) with $LiB_{3}O_{5}$ as a second harmonic generation medium and CLBO as a fourth harmonic and fifth harmonic mediums. (omitted)

  • PDF

Non-invasive Blood Glucose Measurement by a Portable Near Infrared (NIR) System (휴대용 근적외선 분광분석기를 이용한 비침투 혈당 측정)

  • 강나루;우영아;차봉수;이현철;김효진
    • YAKHAK HOEJI
    • /
    • v.46 no.5
    • /
    • pp.331-336
    • /
    • 2002
  • The purpose of this study is to develop a non-invasive blood glucose measurement method by a portable near infrared (NIR) system which was newly integrated by our lab. The portable NIR system includes a tungsten halogen lamp, a specialized reflectance fiber optic probe and a photo diode array type InGaAs detector; which was developed by a microchip technology based on the lithography. Reflectance NIR spectra of different parts of human body (finger tip, earlobe, and inner lip) were recorded by using a fiber optic probe. The spectra were collected over the spectral range 1100 ∼ 1740 nm. Partial least squares regression (PLSR) was applied for the calibration and validation for the determination of blood glucose. The calibration model from earlobe spectra presented better results, showing good correlation with a glucose oxidase method which is a mostly used standard method. This model predicted the glucose concentration for validation set with a SEP of 33 mg/dL. This study indicated the feasibility for non-invasive monitoring of blood glucose by a portable near infrared system.

Voltammetric Analysis on a Disposable Microfluidic Electrochemical Cell

  • Chand, Rohit;Han, Dawoon;Kim, Yong-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1175-1180
    • /
    • 2013
  • A microfabricated electrochemical cell comprising PDMS-based microchannel and in-channel gold microelectrodes was fabricated as a sensitive and a miniature alternative to the conventional electroanalytical systems. A reproducible fabrication procedure enabled patterning of multiple microelectrodes integrated within a PDMS-based fluidic network. The active area of each electrode was $200{\mu}m{\times}200{\mu}m$ with a gap of $200{\mu}m$ between the electrodes which resulted in a higher signal to noise ratio. Also, the PDMS layer served the purpose of shielding the electrical interferences to the measurements. Analytes such as potassium ferrocyanide; amino acid: cysteine and nucleoside: guanosine were characterized using the fabricated cell. The microchip was comparable to bulk electrochemical systems and its applicability was also demonstrated with flow injection based rapid amperometric detection of DNA samples. The device so developed shall find use as a disposable electrochemical cell for rapid and sensitive analysis of electroactive species in various industrial and research applications.

A CMOS Bridge Rectifier for HF and Microwave RFID Systems

  • Park Kwangmin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.6
    • /
    • pp.237-240
    • /
    • 2004
  • In this paper, a CMOS bridge rectifier for HF and microwave RFID systems is presented. The proposed RFID CMOS bridge rectifier is designed with two NMOSs and two PMOSs whose gates are connected to the antenna, and it is operated as a full wave bridge rectifier. The simulation results obtained with SPICE show the well rectified and high enough DC output voltages for the operating frequencies of 13.56 MHz, 915 MHz, and 2.45 GHz which are used in various RFID systems. The obtained DC output voltages are sufficiently high for driving the low power microchip in RFID transponder for the frequency range of HF and microwave.

A CMOS Complementary Bridge Rectifier for Driving RFID Transponder Chips

  • Park, Kwang-Min
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.3
    • /
    • pp.103-107
    • /
    • 2006
  • In this paper, a CMOS complementary bridge rectifier for driving RFID transponder chips is presented. The proposed RFID CMOS complementary bridge rectifier is designed with two NMOSs at the input, which are configured by cross-connected gate structures, and two PMOSs and two NMOSs at the output, which are configured by diode-connected MOS structures. Output characteristics of the proposed rectifier are analyzed with the high frequency small-signal equivalent circuit and verified with SPICE for RFID operating frequencies of 13.56 MHz HF for ISO 18000-3, 915MHz UHF for ISO 18000-6, and 2.45 GHz microwave for ISO 18000-4. Simulation results show well-rectified and high enough DC output voltages for driving the low power microchip in the RFID transponder for the frequency range from HF to microwave. DC output voltages are dropped by only around 0.7 V from the input peak-to-peak voltages.