• Title/Summary/Keyword: microcalcification

Search Result 36, Processing Time 0.018 seconds

Microcalcification Detection Based on Region Growing Method with Contrast and Edge Sharpness in Digital X-ray Mammographic Images (명암 대비와 에지 선예도를 이용하는 영역 성장법에 의한 디지털 X선 맘모그램 영상에서의 미세 석회화 검출)

  • Won, C.H.;Kang, S.W.;Cho, J.H.
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.56-65
    • /
    • 2004
  • In this paper, we proposed the detection algorithm of microcalcification based on region growing method with contrast and edge sharpness in digital X-ray mammographic images. We extracted the local maximum pixel and watershed regions by using watershed algorithm. Then, we used the mean slope between local maximum and neighborhood pixels to extract microcalcification candidate pixels among local maximum pixels. During increasing threshold value to grow microcalcification region, at the maximum threshold value of the contrast and edge sharpness, the microcalcification area is decided. The regions of which area of grown candidate microcalfication region is larger than that of watershed region are excluded from microcalcifications. We showed the diagnosis algorithm can be used to aid diagnostic-radiologist in the early detection breast cancer.

Development of Automatic Cluster Algorithm for Microcalcification in Digital Mammography (디지털 유방영상에서 미세석회화의 자동군집화 기법 개발)

  • Choi, Seok-Yoon;Kim, Chang-Soo
    • Journal of radiological science and technology
    • /
    • v.32 no.1
    • /
    • pp.45-52
    • /
    • 2009
  • Digital Mammography is an efficient imaging technique for the detection and diagnosis of breast pathological disorders. Six mammographic criteria such as number of cluster, number, size, extent and morphologic shape of microcalcification, and presence of mass, were reviewed and correlation with pathologic diagnosis were evaluated. It is very important to find breast cancer early when treatment can reduce deaths from breast cancer and breast incision. In screening breast cancer, mammography is typically used to view the internal organization. Clusterig microcalcifications on mammography represent an important feature of breast mass, especially that of intraductal carcinoma. Because microcalcification has high correlation with breast cancer, a cluster of a microcalcification can be very helpful for the clinical doctor to predict breast cancer. For this study, three steps of quantitative evaluation are proposed : DoG filter, adaptive thresholding, Expectation maximization. Through the proposed algorithm, each cluster in the distribution of microcalcification was able to measure the number calcification and length of cluster also can be used to automatically diagnose breast cancer as indicators of the primary diagnosis.

  • PDF

Usefulness of X-ray Guided Biopsy and Ultrasound Guided Biopsy in Breast Microcalcification Biopsy (유방 미세석회화 조직검사에서 X선 유도 하 조직검사와 초음파 유도 하 조직검사의 유용성)

  • Choi, Miseon;Song, Jongnam
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.3
    • /
    • pp.201-206
    • /
    • 2016
  • Social interest in breast cancer has increased. The most basic exams for diagnosis include breast X-ray and breast ultrasound. In particular, breast microcalcification requires histological diagnosis, and breast microcalcification biopsy is commonly performed. Therefore, this study aimed to analyze and assess X-ray guided biopsy (needle localized open biopsy) and ultrasound guided biopsy (sono guided core needle biopsy), which are basics in diagnosis of microcalcification. Targeting 241 cases in which magnification mammography was performed for patients who visited the hospital due to breast microcalcification, age distribution and the location of lesions were analyzed in X-ray guided biopsy and ultrasound guided biopsy. By classifying exams performed after magnification mammography, the frequencies of X-ray guided biopsy and ultrasound guided biopsy were analyzed, and malignant and benign results were confirmed. The results showed that 64 cases(26.6%) were X-ray guided biopsy, which was 5.4 times higher than 12 cases(4.9%) of ultrasound guided biopsy. Due to development of ultrasound equipments, stereotactic vacuum-assisted biopsy, etc. the methods of histological diagnosis of microcalcification have become diverse, but when considering characteristics and limitations of each exam, X-ray guided biopsy is thought to be most accurate and useful.

Detection Efficiency of Microcalcification using Computer Aided Diagnosis in the Breast Ultrasonography Images (컴퓨터보조진단을 이용한 유방 초음파영상에서의 미세석회화 검출 효율)

  • Lee, Jin-Soo;Ko, Seong-Jin;Kang, Se-Sik;Kim, Jung-Hoon;Park, Hyung-Hu;Choi, Seok-Yoon;Kim, Chang-Soo
    • Journal of radiological science and technology
    • /
    • v.35 no.3
    • /
    • pp.227-235
    • /
    • 2012
  • Digital Mammography makes it possible to reproduce the entire breast image. And it is used to detect microcalcification and mass which are the most important point of view of nonpalpable early breast cancer, so it has been used as the primary screening test of breast disease. It is reported that microcalcification of breast lesion is important in diagnosis of early breast cancer. In this study, six types of texture features algorithms are used to detect microcalcification on breast US images and the study has analyzed recognition rate of lesion between normal US images and other US images which microcalification is seen. As a result of the experiment, Computer aided diagnosis recognition rate that distinguishes mammography and breast US disease was considerably high 70~98%. The average contrast and entropy parameters were low in ROC analysis, but sensitivity and specificity of four types parameters were over 90%. Therefore it is possible to detect microcalcification on US images. If not only six types of texture features algorithms but also the research of additional parameter algorithm is being continually proceeded and basis of practical use on CAD is being prepared, it can be a important meaning as pre-reading. Also, it is considered very useful things for early diagnosis of breast cancer.

Microcalcification Extraction by Wavelet Transform and Automatic Thresholding (웨이브렛 변환과 자동적인 임계치 설정에 의한 미세 석회화 검출)

  • Won, Chul-Ho;Seo, Yong-Su;Cho, Jin-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.4
    • /
    • pp.482-491
    • /
    • 2005
  • In this paper, we proposed the microcalcification detection algorithm which is based on wavelet transform and automatic thresholding method in the X-ray mammographic images. Digital X-ray imaging system is essential equipment in the field diagnosis and is widely used in the various fields such as chest, fracture of a bone, and dental correction. Especially, digital X-ray mammographic imaging is known as the most important method to diagnose the breast cancer, many researches to develop the imaging system are processing in country. In this paper, we proposed a microcalcifications detection algorithm necessary in the early phase of breast cancer diagnosis and showed that a algorithm could effectively detect microcalfication and could aid diagnosis-radiologist.

  • PDF

A Detection of the Microcalcification using fractal Dimension on Mammograms (Mammogram에 있어서 Fractal Dimension을 이용한 Microcalcification 검출)

  • 남상희;최준영;서지현
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 1998.04a
    • /
    • pp.128-132
    • /
    • 1998
  • 유방암의 조기진단을 위한 수단으로 Mammography의 x-선 film-screen이 많이 사용된다. 그러나, Mammogram에서 정상조직과 암조직 간의 대조도 차이가 크지 않으므로 판독은 그다지 쉽지가 않다. 이러한 문제들의 해결을 위하여 mammogram의 디지털 화상처리 및 분석 연구가 활발히 진행 중이다. 본 연구에서는 진단방사선의들이 필름을 판독할 때 시각적인 인지도를 높여주고, 보다나은 의료지원 서비스의 제공을 위한 목적으로, 유방암의 조기진단의 중요한 요소인 미세석회의 검출을 위한 방법으로서 fractal dimension을 구하여 종괴와 미세석회, 미세석회에 대한 차이를 분석하고자 하였다. 각각의 실험군에 대하여 30명씩 60명의 데이터를 0.1mm resolution의 12bit gray scale로 획득하여 사용하였는데, 일차로 화상의 대조도 개선을 위하여 처리를 하였고 화상의 분석으로 강조된 화상의 불규칙정도 및 거친 정도를 나타내기 위하여 fractal dimension을 계산하였다. 원화상에서 가시적으로 분간하기 힘들었던 병변을 화상처리를 통해 강조된 화상에서는 쉽게 그 특징을 볼 수 있었다. 실제로 mammogram을 진단할 때, 강조화상으로 미세석회와 같은 조기진단의 가시적인 판단을 도모할 수 있으며, 미세석회의 진단에서 fractal dimension값을 이용하여 병변 특성의 하나로서 사용할 수 있을 것으로 판단된다.

  • PDF

Microcalcification Extraction by Using Automatic Thredholding Based on Region Growing (영역 성장법을 기반으로 자동적인 임계치 설정을 이용한 미세 석회화 추출)

  • 원철호;권용준;이정현;박희준;임성운;김명남;조진호
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.235-242
    • /
    • 2004
  • In this paper, we proposed the algorithm for detection of microtalcification by automatic threshold decision based on region growing method. The region for optimal threshold is grown from local maximum pixel by increasing repeatedly threshold in microralcification candidate region. Then, the optimal threshold is automatically decided at the maximum value of the contrast and edge sharpness in this region. Microcalcifications could be efficiently detected as satisfied result that true positive ratio is 81.5% and average false positive numbers are 1.1 about total 299 microcalcifirations in real image. In a result, we showed that this algorithm can be used to aid diagnostic-radiologist for the diagnosis of the early phase of breast cancer.

Detection of Mammographic Microcalcifications by Statistical Pattern Classification 81 Pattern Matching (통계적 패턴 분류법과 패턴 매칭을 이용한 유방영상의 미세석회화 검출)

  • 양윤석;김덕원;김은경
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.357-364
    • /
    • 1997
  • The early detection of breast cancer is clearly a key ingredient for reducing breast cancer mortality. Microcalcification is the only visible feature of the DCIS's(ductal carcinoma in situ) which consist 15 ~ 20% of screening-detected breast cancer. Therefore, the analysis of the shapes and distributions of microcalcifications is very significant for the early detection. The automatic detection procedures have b(:on the concern of digital image processing for many years. We proposed here one efficient method which is essentially statistical pattern classification accelerated by one representative feature, correlation coefficient. We compared the results by this additional feature with results by a simple gray level thresholding. The average detection rate was increased from 48% by gray level feature only to 83% by the proposed method The performances were evaluated with TP rates and FP counts, and also with Bayes errors.

  • PDF

A Hierarchical Microcalcification Detection Algorithm Using SVM in Korean Digital Mammography (한국형 디지털 마모그래피에서 SVM을 이용한 계층적 미세석회화 검출 방법)

  • Kwon, Ju-Won;Kang, Ho-Kyung;Ro, Yong-Man;Kim, Sung-Min
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.5
    • /
    • pp.291-299
    • /
    • 2006
  • A Computer-Aided Diagnosis system has been examined to reduce the effort of radiologist. In this paper, we propose the algorithm using Support Vector Machine(SVM) classifier to discriminate whether microcalcifications are malignant or benign tumors. The proposed method to detect microcalcifications is composed of two detection steps each of which uses SVM classifier. The coarse detection step finds out pixels considered high contrasts comparing with neighboring pixels. Then, Region of Interest(ROI) is generated based on microcalcification characteristics. The fine detection step determines whether the found ROIs are microcalcifications or not by merging potential regions using obtained ROIs and SVM classifier. The proposed method is specified on Korean mammogram database. The experimental result of the proposed algorithm presents robustness in detecting microcalcifications than the previous method using Artificial Neural Network as classifier even when using small training data.